HoBe yHanpefheHe Bep3unje nporpama
,»,Ka MMHMMaNHUM napoBuMa”

Hayunu pan DOI: 10.18485/judig.2025.1.ch22

Hanuno Anexcuh’, "= 0000-0002-1478-7487

AncTpakt

Pan je mocehen HOBUM Bep3ujaMa jeJHOT KpaTKOr mporpama Ha
Python-y 3a ayromMaTcKy eKCIepIIijy CerMeHTATHUX MUHUMAIIHUX ITapoBa
U 1apoBa CPOAHHUX Ca CErMEHTAIHMM MUHUMAIHUM [1apOBHMA.
(CermeHTaTHIM MUHUMAJIHUM IIapPOBHMa CMaTpajy C€ OHH MapoOBU PEUH
Yiju ce 4YJaHOBH (DOHOJIOMIKM PA3JIMKYjy CamMo IO jeAHOM mapy
[cermenTanuux]| (oHEMa [OAHOCHO MO jEAHOM TMapy {CETMEHTAJHHX)
(hoHEMCKIX HM30Ba HIIU J€THOM [apy CAYMEEHOM O] Je[IHE {CerMeHTalHe }
dboHemMe U jemHOT {cerMeHTa’ HOr} (POHEMCKOT HH3a] camMo Ha jeaHO]
NO3ULIUJU [HIOP. e U U Y 1EK ~ NAK {Vl 08H Y CK Y C8EMOBHA ~ C8EMCK A} | UIH
Ha BUIIE TO3UIIM]jA [HOP. 1 U p Y MOIGp ~ MOPaT {M a3 U UH Y Kd3& ~
kanan}). ITapoBUMa CpOTHUM ca CerMEHTATHUM MHUHMMAJIHUM MapoBUMa
cMarpajy ce OHM MAPOBH PEUM UHJU CE WIAHOBU (DOHOJIOWIKU PaA3IUKY]y
caMo MO MPO30IUjH U T10 jeTHOM Hapy [cerMeHTanHuXx| ¢poHemMa [0THOCHO
caMO 1O MPO30JUjU U MO JEeIHOM Napy {CEerMEHTATHUX| (HOHEMCKHUX
HU30Ba UJIH JeTHOM Iapy CadyMEbEHOM O]l JeIHE {CerMeHTanHe} (oHeMe U
JemHOT {CerMeHTaJHOT} (H)OHEMCKOT HHM3a]| caMO Ha JeIHOj TTO3UIIUjH [HIIp.
h n u 'y npéeneoahe ~ npeeneddue {M ay u ep y Oecmundyuja ~
decmuiépuja]| MW HA BUIIIE TTO3UIH]A [HOP. e U Uy OE1E ~ OHIU {Vl uH 1
oc 'y nHHAH ~ 10coc}; yu. Anexcuh & Hlanapux, 2021, pp. 569-570].) V
HajOpKOj T0CaAallIKk0] BEp3uju oBor mporpama (B. Anekcuh & Mpkena,
2022) cerMeHTalHM MUHUMAaJIHM IIApOBM MW TIApOBU CpPOJHU ca
CEerMEHTATHUM MHUHUMAITHUM TTapOBHMa 00pa30BaHM Cy MMOMONhy pedHuKa,
crangapaHor manupajyher tuma (,.standard mapping type”; Python

! Karezpa 3a CPIICKH je€3HK Ca jy)KHOCIOBEHCKUM j€3ULMMa, YHUBEP3HUTET y Beorpamy —
Ounonowky ¢paxynret, danilo.aleksic@fil.bg.ac.rs

https://doi.org/10.18485/judig.2025.1.ch22
https://orcid.org/0000-0002-1478-7487

JUDIG - Proceedings, November 21-23, 2024. Belgrade

Software Foundation, 2025b), momohy Kor je W TOKEHH30BaH YJIa3HU
koprryc. HoBe, TpeHyTHO HajOpke Bep3uje 00paszyjy mapoBe KOjU Cy
HOCpeIy U TOKEHU3Y]y YJIa3HHM KOpIyC IMOMONy Kjaca, Tako IITO C€ Kao
PEYHHYKHU KJbYYECBH KOPUCTE HA3MBH KJIACOBHHX aTpUOyTa, a KA0 PSUYHUYKE
BPEIHOCTH — BPEIHOCTH KJIIACOBHUX aTpUOyTa.

KrbyuHe peyn: je3uk, Kiiace, MUHUMATHH TApOBHU, OIITUMH3AIIH]a, PEYHHIIN,
Python.

1. YBop

Y cBuUM CBOjUM Bep3ujama, Iporpam ,,Ka MUHUMaTHIUM apoBUMa”
nu, ckpaheno, KaMII (Anexcuh & Mpkena, 2022; Anekcuh & Ilanapux,
2021) ynapyje TOKeHe JaTHHMYKOT CPIICKOI” yIa3HOI KOpIIyca KOjH CE,
CBEJICHM Ha Maja CJOBa, Pa3MKYjy camMoO IO 3aJaTUM MOJHHCKama.
Jlo6ujajy ce mapoBu Tuna "znace ~ znace" (aKo Cy 3aJaTe MOIHUCKE
"E¢"u"e"), "dzak ~ dak" (ako cy 3amare nogHucke "dz" u "d")u
"Harlemovskom ~ harlemskom" (ako cy 3amare nogHucke "ovsk"
u "sk"), KaKBU C€ MOTY KOPUCTHTH Y HACTaBU CPIICKOT Ka0 CTPAHOT je3nKa
(Anexcuh & Mpxkena, 2022, p. 8; Anekcuh & Iangpux, 2021), y
norormeawju (yn. Hmp. Storkel, 2022) u y muarBuctumm (Anexcuh &
Mpxkena, 2022, p. 8; Anekcuh & [angpux, 2021).

[pBa Bep3uja KaMII-a TokeHe ynapyje Tako IITo y yia3HOM KOPITYCY,
nomohy peryiapHor u3pasa, Tpakd TOKEHE ca MPBOM 33/1aTOM TOJHHUCKOM,
3aMemyje TPBY 3a/1aTy MOJHUCKY IPYrOM 3aaToOM IOJHUCKOM H JT0OHjeHe
HHCKE TPaKH y UCTOM yla3HoM koprycy (Anekcuh & Hlanapux, 2021), mrro,
MOKa3aJio ce, HUj€ HajOp KK HauMH. Y3 TO, PETyIapHH HU3pa3 MocTaje J0CTa
CIIOKEH KaJla My OJlroBapa Jy’ka MOJAHUCKA, HIIP.:

"(?<![A-Za-zC-%]) ([A-Za-2zC-%-1* (IZACIJ|IZACIJ|"
"IZACiJ|IZACij|IZAcIJ|IZAcCIj|IZAciJ|IZAcij|"
"IZaCIJ|IZaCIj|IZaCiJd|IZaCij|IZacIJ|IZacIj|"
"IZaciJ|IZacij|IzACIJ|IzACIS|IzACiT|IZACLiS|"
"IzAcIJ|IzAcIj|IzAciJ|IzAcij|IzaCIJ|IzaCIg|"
"IzaCiJ|IzaCijl|IzacIJd|IzacIj|Izacid|Izacij|"
"iZACIJ|1iZACIj|iZACiJ|1iZACij|1ZAcIJ|1ZAcIj|"
"iZAciJ|iZAcij|izaCIJ|izaCIj|iZaCid|izaCij|"
"iZacIJ|iZacIj|iZaciJ|iZacij |izACIJ|izACIj|"

2 KaMII-oBu cy npensuhenu 3a kopiyc koaupan cxemom UTF-8 (yn. Anexcuh & Mpkena, 2022,
p.7). Tect npBe Bep3uje KaMII-a Ha TekcTy komupanom cxemoM ISO-8859-1 uuje 6mo ycneman
(Anekcuh & Iauapux, 2021, p. 572). KaMII-oBu kopiyc npolecupajy HOBpIIHO, CaMO Ha
HHMBOY THcMa (0e3 PO30/IMjCKUX M M3TOBOPHUX penpesenTanuja). [Ipunarohenn KaMIT 2.3
YCHEIIHO je TECTUPAH Ha TYPCKOM TEKCTY.

382

JUDIG - Proceedings, November 21-23, 2024. Belgrade

"izACiJ|1izACij|izAcIJ|izAcIj|izAciJ|izAcij|"
"izaCIJ|izaCIj|izaCiJ|izaCij|izacIJ|izacIj|"
"izacidl|izacij) [A-Za-zC-%-1%*) (?! [A-Za-zC-2])"

rpeMa NoAHuCHHU "izacij", ¥ APaCTUYHO yCIIOpaBa HOHAKO TPOMY IIPBY
BEp3Hjy.

Bpxe cy Bep3uje 2 u 2.1 (Anexkcuh & Mpxena, 2022). (Bep3ujy 2
je Hanucao Jlanmino Asnekcuh, a ynapuBame TOKCHa y Bep3uju 2.1 penieme
je Jlazapa Mpxene.) OHe Kpo3 ylla3HH KOPIYC IMpoJa3e CaMoO jeIHOM,
BaJichy TOKeHe KOjU capiKe MpPBY 3a/1aTy MOJHUCKY, APYTY 3a]aTy MOAHUCKY
uiH 00e 3a/1aTe MOJHKUCKE. 3a/1aTe MOAHUCKE CE Y TOKSHNMA 3alTMCaHNM MajIuM
CIOBMMA 3aMemby]y CrenujamHuM Kapakrepom, "\ 1". Ha npumep, ako cy
3a7are nogHucke "ovsk" u "sk", Hucnu "Harlemovskom", momro ce
3ajare TOJHUCKE TIPEKJIAajy, OJroBapajy JBe IMOpeAOCHE HHCKE —
"harlemov\ Yom" um "harlem\ Yom" — a mumcum "harlemskom"
oxrosapa jeaHa nopeadena Hucka: "harlem\ Yom". IaBHu j1eo Bepsuje 2
jecte JlekapToB MpOM3BOJ TOPKH KOj€ Caipke TOKEH ca MPBOM 33/1aTOM
TIOJTHACKOM M TOPKHU KOj€ CaJip’kKe TOKEH ca JAPYTOM 3aJIaTOM TTOJJHUCKOM, HIIP.
JlekapToB MpOU3BOI TOPKU ("CAK", "&ak", "vak") u ("vican",
"vican", "vi\{Yan") HajemHojuTopku ("Pak", "dak", "\ ‘Yak")
u ("vidan", "vidan", "vi\Yan") HaJIpyroj cTpaHu, JaKje HIIp.:

("éAK", "éak", "vak") ,
("Dak", "dak", "vak")

(HCAKH, "éak", "Vak"),
("vidan", "vidan", "vivan")
)y
(
("viéan", "vic&an", "vi\{lan"),

(HBakH , "dak" , Hvakn)

("vican", "vican", "vi“an"),
("vidan", "vidan", "vi“an")

383

JUDIG - Proceedings, November 21-23, 2024. Belgrade

aKo cy 3a71are noaHucke "¢" u "d" u ako Hema APYrux TOKEHa ca 3a1aTuM
noAHKUCKaMa. Y Bep3uju 2 ce U3 M3padyHaTtor JlekapToBOr HpoH3BOJA
y3umajy Mel)ycoOHO pa3IMuuTH TOKSHH KOje IpaTe UCTe Mopea0eHe HUCKE.
I'maBHM neo Bep3uje 2.1 jecre peunuk (B. onesbak ,,Honne y KaMII-y 2.2
n 'y KaMIl-y 2.3”) y unjum cy BpeIHOCTUMA TOKEHHU Ca JAPYTrOM 3a71aTOM
MTOJTHUCKOM, a YH]H Cy KJbyueBH IopeoeHe Hucke. Y Bep3uju 2.1 mel)y Tum
KJbydeBUMa Tpake ce mopendeHe HHCKE TOKEHAa ca IPBOM 3aJlaTOM
nogauckoM. U Bep3uja 2 u Bep3uja 2.1 yna3Hu KOPIyC TOKEHU3Y]y ITOMOhy
peunuka. Y Bep3uje 2 u 2.1 yBeleH je u MO/ Y KOjeM ce He 3aHeMapyjy
pasznuke m3Mmely BENMKUX M MalMX CIIOBa KOJ EKCIEPIHUpPAaHUX TOKEHA
(mpBa Bep3uja je TOTHYHE pa3lIuKe UTHOPHCATIA).

VY onespiuMa KOju Cliefie MpeAcTaBiba C€ jeJaH TUIl MOTYhHOCTH,
onuyen y KaMIlI-y 2.2 u KaMIlI-y 2.3, na ce no caaa Hajopxu KaMII
JOJIATHO yOp3a.

Ceu KaMII-oBu cy nucanu Ha mporpamckoM je3uky Python u 3a

noTpebe OBOT MCTpaKMBamba MOKPETaHW HAa HEroBHUM Bep3ujama 3.8.2 u
3.13.5.

2. 3aluTo HoBe Bep3unje?

V jennoj kwu3u o Python-y cpehy ce crnenehe cmepnuiie:

Now that you’ve made your code work, and possibly made it better
than the initial version, it may be time to make it faster. Then, again, it may
not. One very important rule (along with such principles as KISS = Keep It
Small and Simple, or YAGNI = You Ain’t Gonna Need It) that you should
heed when tempted to fiddle with your code to speed it up:

Premature optimization is the root of all evil.
— Donald Knuth, paraphrasing C. A. R. Hoare

Another way of stating this, in the words of Ken Thompson, co-
inventor of UNIX, is “When in doubt, use brute force.” In other words,
don’t worry about fancy algorithms or clever optimization tricks if you
don’t really, really need them. If the program is fast enough, chances are
that the value of clean, simple, understandable code is much higher than
that of a slightly faster program. After all, in a few months, faster hardware
will probably be available anyway.

384

JUDIG - Proceedings, November 21-23, 2024. Belgrade

But if you do need to optimize your program, because it simply
isn’t fast enough for your requirements, you absolutely should profile it
before doing anything else. That is because it’s really hard to guess where
the bottlenecks are, unless your program is really simple. And if you don’t
know what’s slowing down your program, chances are you’ll be optimizing
the wrong thing. (Hetland, 2008, pp. 362-363)

Y npyroj ce kaxe:

This chapter covers the subjects in the natural order in which they
occur in development: testing first and foremost, debugging next, and
optimizing last. Most programmers’ enthusiasm focuses on optimization:
testing and debugging are often (wrongly, in our opinion) perceived as
being chores, while optimization is seen as being fun. ... the Pythonic
approach to optimization—close to Jackson’s classic "Rules of
Optimization: Rule 1: Don’t do it. Rule 2 (for experts only): Don’t do it
yet.” (Martelli et al., 2017, p. 453)

¥ tpehoj: ,,Optimization is the altar where maintainability is sacrificed”
(Ramalho, 2015, p. 91). U3 nepcriektuBe narux murara, KaMII 2.2 u KaMI1
2.3 pesynrar cy HEOArOBOpHOI pacrionarama pecypcuma. Hamwme, (1) Beh je
nocTojasa 3a10BosbaBajyhe edukacua Bepsuja, KaMII 2.1, (2) Jlazap Mpkena
je xao mpoOiem y Be3u ca Op3uHoM KaMII-a 2 koju Tpeba Hajupe pemmTu
TIPENo3HA0 CIIOPO YUUTaBae Kopiyca®, (3) UCTH ayTop je Kao MpBU KOPaK y
yop3aBamy KaMII-a 2 npenyiokno nonaBame OMIifje 3a KpeHpame PpeUHUKA OJ1
KOpITyca Koju OM ce cadyBao Ha JIHCKY, a kao cieaehu Moryhu kopak momeHyo
napanenusanujy nperpare (Anexkcuh & Mpkena, 2022, p. 19; kako ce BUIU U3
oznespka ,,Hosrnne y KaMII-y 2.2 u y KaMII-y 2.3”, KaMII 2.2 u KaMII 2.3 ne
oCTBapyjy Te 1beBe) U (4) HaunH Ha koju je y KaMIl-y 2.2 u KaMII-y 2.3
MIOCTUTHYTO YOp3ame Hije OCMHUIIBEH Ha OCHOBY NMPO(rIICcama.

Y oarosop 0u ce morao nutupatu Pejmonn Xerunyep: ,, There must
be a better way!” (amp. PyData, 2023, 12:03; SF Python, 2016, 9:21).
AyTopH KOju TOMaxy mporpamepuMma aa Oyay O0JbU y CBOM TOCIY HE
CHOCE pH3HMKEe IIpepaHe U HeNoTpeOHEe ONTUMH3AIMje KOjU CHOCe
IporpaMepH MpH pa3BHjamy KoAa y HEKOj cOYTBEPCKO] KOMITaHUjU. AKO je
KOHTEKCT IpefaBame o Python-y, cacBUM je oueKuBaHO Aa ce€ MPOMOBUIILY
edukacHuju ¥ nenmy npuctynu. Ha npumep, XeTuHyep je TOKOM jeTHOT
npenaBama o Python-y (Next Day Video, 2013, 12:50) nutao myOnuky
Kako TpeOa KOHKaTeHUPATH HUCKE W KaKO HHUCKE He TpeOa KOHKAaTeHUPATH
MaKo M Taj APYTH, HEMPEnoOpy4YeHU MPHUCTYN IMOCTHUXKE HCTH LuJb. M3

3KaMII-0BM KOpIyC y4UTaBajy y A€I0BMMA YHjy BEIMUUHY H CENapaTope OMpa KOPUCHUK
(Anexcuh & Mpxkena, 2022, pp. 15, 20-21; Anexcuh & Hlanapux, 2021, pp. 572, 581).

385

JUDIG - Proceedings, November 21-23, 2024. Belgrade

MEPCIICKTUBE YYCHa, WM M3 aKaJeMCKe IMEepCIEKTUBE, U3pana OpKux
Bep3uja KaMIl-a u nucame uianka o lUMa UIak HUCY TYOJbEHhEe BpeMEHa.

3. HoBnHe y KaMI-y 2.2 ny KaMl1-y 2.3

Kox KaMII-a 2.2 u x6n KaMII-a 2.3 6uhe o0jaBjbeHH Ha cajTy
aytopa (Anekcuh, n.d.).

I'maBna pasnuka m3mely KaMlIl-a 2.2 u KaMlIl-a 2.3 c jenne u
KaMTII-a 2.1 ¢ npyre ctpaHe jecte ynorpeda Kiaca yMeCTO HEKMX pEYHHUKA.
YMecTo KJjbyueBa U BPEIHOCTH, KOj€ MMAjy PEYHHUIIU, YyIOTpeOshaBajy ce
HA3MBH KJIACOBHUX aTpuOyTa, OIHOCHO BPEIHOCTH KJIACOBHUX aTpuOyTa:

rec¢nik[red] = rec.casefold()
"""3 TokeHMzaumje KaMl-a 2.1."""

setattr(self, recd, rec.casefold())
"""3 TokeHMzaumje KaMl-a 2.3."""

IIpema buzmujy (2006, p. 143), setattr (object, name,
value) UCTO je ITO U object.name = value. OTKyna oHIa U300p
yrpahene ¢yHkumje setattr (), oaHocHo yrpaheHux ¢yHKUHja
getattr () mhasattr () (ym.:

class Rec¢nik2:
def init (self):
for torka in torka 2[0]:
if not hasattr(
self, torka [0]):
setattr (
self, torka [0], {})
getattr (self, torka [0]) [
torka [1]] = torka [2]

), yMecTo HoTaluje TaukoM (HIp. self.re¢ = rec.casefold())?
Pa3znor aa ce Tako noctynu Moxkaa 100po popmymnumie Jlamu (2021, p. 43):
»the ... functions are used to manipulate the attributes of an object when
the name of the attribute is not known at the time of writing the program,
but is available during execution in a variable (as a string)” (a KaMII-oBu
pazie Ha KOpIycy Koju Oupa KOPHCHHK). 3ampaBo, H7eja Ja Ce YMECTO
HOTaIMje TadykoM omabepy yrpahene d¢yHkiuje getattr(),
hasattr () usetattr () moruue ca cajra,,Stack Overflow”, anu je on
HEMOroJIaH 3a HUTHPakE jep HUje ,,ayTOPUTATHBAH U3BOP~. YII.:

386

JUDIG - Proceedings, November 21-23, 2024. Belgrade

"""yp je ynapuTU CBE peur U3 JIUCTE
ca BMXOBMM Beps3mMjaMa OoOM]jeHUM
nomohy meToma casefold() .

class Testl:
def init (self):
for re¢ in [

"Je,HaH" ",I[BA", "TPM"] .

4
self.re¢ = rec.casefold()
testl = Testl ()
print (vars (testl))
"""MSHaS: {'reé': 'TpM'}."""

class Test2:
def init (self):
for re¢ in [
"Jemau", "IBA", "TPU"]:
setattr(
self, recg,
rec.casefold())

test2 = Test2 ()

print (vars (test2))

"""Y3naz: {'Jeman': 'jeman',
'IBA': 'mea', 'TPU': 'Tpum'}.

KaMIT 2.2 wu KaMII 2.3 pa3nukyjy ce mno Aekiapauuju
__slots__ (Goodrich etal., 2013, p. 99):

class RecCnik: # KaMI 2.2
tokeni = tokenizacijal()
__slots_ = tokeni

def init (self):
for re¢ in self.tokeni :
setattr (
self, recg,
rec¢.casefold())

class Rec¢nik: # KaMI 2.3
def init (self):
for re¢ in tokenizacija():
setattr (
self, reg,
rec¢.casefold())

387

JUDIG - Proceedings, November 21-23, 2024. Belgrade

Kao mTo ce y pedyHummma Cprckor je3uwka, HOp. y ,.PedHuKy
CPIICKOXPBATCKOT KIbMDKEBHOI M HapomHor jeswka” (MHctuTyT 3a
cprick[oxpBarck|u je3uk, 1959—present), nedpuHunMje ynapyjy ca jseMama
(ym. Heisler et al., 2021, p. 263), npu yeMy je cBaka JieMa jeIMHCTBEHA
(HujenHa ce He AeduHUINIE 1BAa WM BUIIE ITyTa [HUTH WjeJHA BHIIE MyTa
ynyhyje Ha apyry yiemy wim apyre jeme]), y Python-oBum peunuimma
MOXPAamYjy Ce MapOBH 1O jeHOT KJbyYa H IO jeJHE BPEAHOCTH, IIPU YEMY
j€ CBaKH KJbYY Y JJaTOM PeuHUKY jeauHcTBeH (Shovic & Simpson, 2021, p.
172). (Honyure, kibydeBu ce y Python-oBom peuHUKY HE MOTY COPTHUPATH,
HEro C€ HIWKYy T0 perocieny yBohewma y peunuwk [Python Software
Foundation, 2025b].) Ha mpumep:

knjiZevnici mesto rodenja = {
"Nanmyao Kum": "CyGoruua",
"Meo Anmpwmh": "Iojmau",
"Munopan IlaBuh": "Beorpan",
"AnexcaHnap Byuo": "Beorpan"

}

Y pedHuky knjizZevnici mesto rodenja KJby4eBH Cy MMEHa
KIbMKEBHUKA, a BPETHOCTH Cy MMEHA Hacesba.

Knaca je y Python-y cpenctBo amnctpakumje — BpcTa o0jekra u
HapT, maboH wim (hadprka 3a reHepucame Apyrux odjexara. O0jekar je
HaK CKyTI IoJlaTaka 3ajeJJHO ca NmoBe3aHuM noHamamuma (Goodrich et al.,
2013, p. 69; Hetland, 2008, p. 147; Lott & Phillips, 2021, p. 4; Lutz, 2007,
p. 465; Parker, 2021, p. 220). Y Python-y je cBaku nogarak o6jexar (Brueck
& Tanner, 2001, p. 14). U came knace cy o0jextu (Reitz & Schlusser, 2016,
p. 66). CBu o0O0jekTH NpuNanajy HEKOj KjIach M 30By c€ MpUMEpLH
(instances) Te kiace (Hetland, 2008, p. 147). [lonamama o6jekra koja cy
no0po mo3Hara, UiaM (QyHKIMje Koje MpHUMajajy KiacH, 30By C€ METOAH
(Norton et al., 2005, p. 80; Parker, 2021, p. 220). Ha npumep, pedHuk uma
meron clear (), kKoju Opulle cBe MapoBe KJbydyeBa M BPEIHOCTH Y
peunuky (Python Software Foundation, 2025b). IlpomenspuBe koje cy
nmoBe3aHe ca o0jekTuma 30By ce atpudyTu (Sweigart, 2021, p. 278). Knaca
ce MOXe 3aMHCIUTH Kao (opmynap win ynutHuk (Heisler et al., 2021, p.
281), a arpubyTH Kao nurama y memy. Ha npumep (B. Shovic & Simpson,
2021, p. 222):

388

JUDIG - Proceedings, November 21-23, 2024. Belgrade

class Clan:
def init (self, k ime, p ime):
self.korisnic¢ko ime = k ime
self.puno _ime = p ime

V xnacu Clan arpubyru cy korisni¢ko ime u puno_ime. ITomohy
krace Clan Moke ce HAYMHUTH HOBH oOjekar: novi &lan =
Clan("petar1502", "ITerap Joparosuh").

Kiacu je o6udHo Moryhe HakHAIHO TO/AaTH apOUTpapaH arpuoyT
(B. Martelli et al., 2017, p. 122). Ha npumep, o6jekty novi ¢lan mMoxe
ce JoJaTH roauHa pohewa: novi ¢lan.godina rodenja = 1990.
Mebhytum, 00jexTy novi ¢lan HakHaAHO AOAATH apOUTpapaH aTpulyT
Huje Moryhe ako je kinaca Clan neduHuCcaHa OBAKO:

class Clan:
__slots = (
"korisnic¢ko ime",
"puno_ime")

def init (self, k ime, p ime):
self.korisnic¢ko ime = k ime
self.puno _ime = p ime

Knacosun arpubyr slots cepuja je HUCKHM Koje he kmaca
NpUXBAaTUTH Kao Ha3uBe aTpubyTta (B. Beazley, 2006, p. 94; Martelli et al.,
2017, p. 122). YV onpehenum ciydyajeBuma ynoTpeOoMm arpudyTa
__slots__ wmory ce ymreznetn memopuja u Bpeme (Python Software
Foundation, 2025a; Ramalho, 2015, pp. 264-267).

4. BpeMe nsppiasarba KaMrll-a 2.2 n KaMll1-a 2.3

Cxopo ucro kao y pany Hanumna Anexcuha u Jlazapa Mpkere,
»|0]p3uHa je mepena y Python-y 3.8.2” u 3.13.5, ,,na Manjaro Linux-y,
padyHapoM ca npouecopoM 15-11600K u nsa DDR4-3200 CL16 SDRAM-
aonmno 16 GB u Ha kopriycy POL, koju” (Anekcuh & Mpkena, 2022, p. 17)
,0poju oko 117.900.900 peun u3 223.308 TexcroBa ca cajra Ilorumuxa”
(Anexcuh & Hlanapux, 2021, p. 575; B. Tabeny 1 u Tabemny 2).

389

JUDIG - Proceedings, November 21-23, 2024. Belgrade

3anmare Bepauja
mogaucke Python-a

"ac", 3.8.2
"aca” 3.13.5
nEn, 3.8.2
net 3.13.5
"lac", 3.8.2
"teld" 3135
g, 3.8.2
z" 3.135
mom 3.8.2
z" 3.13.5
A 3.8.2
za" 3.13.5

Tabena 1
Bpeme usspwasarwa KaMlIl-a 2.2 u KaMlIl-a 2.3 (y cekynoama)

Bpeme y cexkyHnama (mpocek 10 cykiieCHBHUX Mepema)
KaMIT 2.2 KaMII 2.3

KaMII
182
154
676
589
187
163
646
608
1669
1536
165
136

KaMII 2 KaMII 2.1

(Mom A) (moxm A)
150 67
116 63
398 67
280 64
68 67
65 63
382 67
266 64
912 67
579 63
147 67
113 63
Tabena 2

(Mom A)
59
54
61
55
61
54
61
54
62
55
59
54

(mom A)
58
51
57
52
57
51
58
52
57
51
57
50

Bpeme usspwasarwa KaMll-a 2.2 u KaMlIl-a 2.3 (y npoyenmuma)

3anmare Bepsuja
MOTHUCKE Python-a

"ac", 3.8.2
"aca” 3.13.5
nEn, 3.8.2
"z 3.135
"lac", 3.8.2
"teld" 3135
nE, 3.8.2
"z 3.13.5
no 3.82
"zt 3.135
mym 3.82
"za" 3.13.5

KaMIT
100
100
100
100
100
100
100
100
100
100
100
100

KaMII 2

(moxm A)
82,42
75,32
58,88
47,54
36,36
39,88
59,13
43,75
54,64
37,7
89,09
83,09

[MporieHaT HajIyKEr BpeMeHa Y 1aTOM pey
(mpema moganmma u3 Tabene 1)

KaMII 2.1 KaMII 2.2 KaMII 2.3

(mom A)
36,81
40,91
9,91
10,87
35,83
38,65
10,37
10,53
4,01
4,1
40,61
46,32

(Mmom A)
32,42
35,06
9,02
9,34
32,62
33,13
9,44
8,88
3,71
3,58
35,76
39,71

(mom A)
31,87
33,12
8,43
8,83
30,48
31,29
8,98
8,55
3,42
3,32
34,55
36,76

390

JUDIG - Proceedings, November 21-23, 2024. Belgrade

5. KomeHTap 0 yTuuajy knacoHor atpubyta slots HaBpeMme
W3BpLUABatba

Tabena 1 u Tabena 2 nokasyjy 1a neduHrcame KI1acOBHOT arpudyra
__slots_ Hecamo aa He yop3asa KaMII 2.2 Hero ra, y onHocy Ha KaMII
2.3, u ycriopasa. Y3poK OJICYCTBY yOp3ama HajBepOBaTHH]E je TO IITO je Opoj
npuMepaka Kkiaca 1o jenad. Haume, kimacoBuu arpubyr ~ slots — Bpemd
JIONIaTH caMO OHHMM KjlacaMa Koje MMajy TOJHMKO TpHMepaka Ja je BakKHa
yIITEIa HEKOJIMKO JIeCeTHHA 0ajToBa 10 MPUMEPKY, a TO Cy TUIIMYHO KJace
KOj€ MMajy MUJIMOHE IpUMepaka ,, KuBuX~y ucto Bpeme (Martelli et al., 2017,
p. 122). Benuku 06jextH, kakBu Mory Outu oojext y KaMII-y 2.2 u y KaMII-
y 2.3, oBy Mally yluTey YuHe upeneBaHTHOM (B. Reitz & Schlusser, 2016, p.
122). Vnorpeba atpubyra slots yOp3anaje PamassoB (2015, pp. 265—
266) ckpunt koju kperpa 10.000.000 mpumepaxka (,,mem_test.py creates 10
million Vector2d instances using the class defined in the named module (e.g.,
vector2d v3.py)”).

6. 3aK/byyak

Hajopixe Bep3uje KaMII-a tpenytno cy KaMII 2.2 u KaMII 2.3, y
KOjUMa C€ YMECTO PeUHHKa 332 TOKCHH3ALUjy U PEYHHKA 33 YIIAPHBAILE I10
nopenOeHoj Hucou Kopucre kimace (u ¢dyHKIUje getattr (),
hasattr () u setattr ()); KJbydeBUMa pEUHHKA OArOBapajy Ha3WBU
KJIaCOBHUX aTpuOyTa, a BPEIHOCTHUMA pPEYHHKA OATOBapajy BPEIHOCTH
KJIACOBHUX aTpulyTa.

Bepsuja KaMII-a ca ximacama y kojuma ce AepUHUILIE KIACOBHU
arpubyr slots (2.2) Opxa je on Bep3uje ca peynuuuma (2.1), a
CIIOpHja OJ] Bep3Huje ca Kjlacama y KojuMa ce Taj arpuOyT He AepUHHUIIE.

PedepeHue

[1] Anexcuh, [1. (n.d.). [lpenopyuene eéepsuje nexux objassenux padosa. Jlanuno
Anexcuh. Retrieved July 31, 2025, from
https://daleksic.rs/preporucene verzije/

[2] Anexcuh, /1., & Mpxkena, JI. (2022). YHanpehene Bep3uje nporpama ,,Ka
MHUHUMAJIHUM napoBuma”. Mugpomexa, 22(1), 7-31.

https://infoteka.bg.ac.rs/ojs/index.php/Infoteka/article/view/2022.22.1.1 sr

[3] Anexcuh, /1., & Hlannpux, b. (2021). Ayromarcka ekcliepripja napoBa pean
32 y4eH-€ U3r0BOpa y HACTABH CPIICKOT KA0 CTpaHoOT je3uka. Cpncku jesux,

26(1), 567-584. https://doi.org/10.18485/s).2021.26.1.32

391

https://daleksic.rs/preporucene_verzije/
https://infoteka.bg.ac.rs/ojs/index.php/Infoteka/article/view/2022.22.1.1_sr
https://doi.org/10.18485/sj.2021.26.1.32

JUDIG - Proceedings, November 21-23, 2024. Belgrade

[4] WuctutyT 32 cprick(oxpBarck)u je3uk. (1959—present). Peunux
CPNCKOXPBAMCKO2 KibudicesHoe u HapooHoe jesuka (Vols. [-XXII).

[5] Beazley, D. M. (2006). Python: Essential reference (3rd ed.). Sams Publishing.
[6] Brueck, D., & Tanner, S. (2001). Python 2.1 bible. Hungry Minds.

[7] Goodrich, M. T., Tamassia, R., & Goldwasser, M. H. (2013). Data structures
and algorithms in Python. John Wiley & Sons.

[8] Heisler, F., Amos, D., Bader, D., & Jablonski, J. (2021). Python basics: A
practical introduction to Python 3 (4th ed.). Real Python.

[9] Hetland, M. L. (2008). Beginning Python: From novice to professional (2nd
ed.). Apress.

[10] Lamy, J.-B. (2021). Ontologies with Python: Programming OWL 2.0
Ontologies with Python and Owlready?2. Apress. https://doi.org/10.1007/978-
1-4842-6552-9

[11] Lott, S. F., & Phillips, D. (2021). Python object-oriented programming: Build
robust and maintainable object-oriented Python applications and libraries (4th
ed.). Packt Publishing.

[12] Lutz, M. (2007). Learning Python (3rd ed.). O’Reilly Media.

[13] Martelli, A., Ravenscroft, A., & Holden, S. (2017). Python in a nutshell: The
definitive reference (3rd ed.). O’Reilly Media.

[14] Next Day Video. (2013, March 21). Transforming code into beautiful, idiomatic
Python [Video]. YouTube.
https://www.youtube.com/watch?v=0SGv2VnC0go

[15] Norton, P, Samuel, A., Aitel, D., Foster-Johnson, E., Richardson, L., Diamond,
J., Parker, A., & Roberts, M. (2005). Beginning Python. Wiley Publishing.

[16] Parker, J. R. (2021). Python: An introduction to programming (2nd ed.).
Mercury Learning and Information.

[17] PyData. (2023, January 11). Raymond Hettinger: Numerical marvels inside
Python - keynote | PyData Tel Aviv 2022 [Video]. YouTube.
https://www.youtube.com/watch?v=wiGkV37Kbxk

[18] Python Software Foundation. (2025a, June 11, 15:46 UTC). 3.3.2.4. _ slots .
Python 3.13.5 documentation. Retrieved October 30, 2025, from
https://docs.python.org/release/3.13.5/reference/datamodel.html#slots

[19] Python Software Foundation. (2025b, June 11, 15:46 UTC). Mapping types —
dict. Python 3.13.5 documentation. Retrieved October 30, 2025, from
https://docs.python.org/release/3.13.5/library/stdtypes.html#mapping-
types-dict

392

https://doi.org/10.1007/978-1-4842-6552-9
https://doi.org/10.1007/978-1-4842-6552-9
https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=wiGkV37Kbxk
https://docs.python.org/release/3.13.5/reference/datamodel.html#slots
https://docs.python.org/release/3.13.5/library/stdtypes.html#mapping-types-dict
https://docs.python.org/release/3.13.5/library/stdtypes.html#mapping-types-dict

JUDIG - Proceedings, November 21-23, 2024. Belgrade

[20] Ramalho, L. (2015). Fluent Python: Clear, concise, and effective programming.
O’Reilly Media.

[21] Reitz, K., & Schlusser, T. (2016). The hitchhiker s guide to Python: Best
practices for development. O’Reilly Media.

[22] SF Python. (2016, December 16). Modern dictionaries by Raymond Hettinger
[Video]. YouTube. https://www.youtube.com/watch?v=p33CVV290GS8

[23] Shovic, J. C., & Simpson, A. (2021). Python all-in-one for dummies (2nd ed.).
John Wiley & Sons.

[24] Storkel, H. L. (2022). Minimal, maximal, or multiple: Which contrastive
intervention approach to use with children with speech sound disorders?
Language, Speech, and Hearing Services in Schools, 53(3), 632—645.
https://doi.org/10.1044/2021 LSHSS-21-00105

[25] Sweigart, A. (2021). Beyond the basic stuff with Python: Best practices for
writing clean code. No Starch Press.

New Enhanced Versions of the Program “Ka minimalnim
parovima” (“Towards Minimal Pairs™)

Danilo Aleksié

Summary

The paper presents a modest optimization technique applied to
further increase the speed of a specific Python script. The purpose of the
script 1s to find pairs of strings which differ in two specified substrings only
(in one or more positions). Depending on the language of the input corpus,
these pairs, or some of them, can be useful in linguistics, language teaching,
and speech-language pathology. The core of the script pairs up strings with
which identical comparison strings are associated. For example, in the
versions 2 and 2.1 of the script, if the specified strings are "a" and "e"
and if the list of the input corpus tokens contains the strings "real" and
"reel", the strings "real" and "reel" will both have "r\ Y\ 11"
as the comparison string and the output will contain the pair "real ~
reel". Until now, the fastest version of the script (2.1; Anekcuh &
Mpkena, 2022) coupled strings by means of a dictionary, in which the keys
were the comparison strings. In this version, a dictionary was also a
component (and the output) of the tokenization function. The current fastest
versions, 2.2 and 2.3, couple strings by means of classes in which attribute

393

https://www.youtube.com/watch?v=p33CVV29OG8
https://doi.org/10.1044/2021_LSHSS-21-00105

JUDIG - Proceedings, November 21-23, 2024. Belgrade

names and attribute values correspond to the 2.1 version’s keys of the
comparison dictionary and values of the comparison dictionary,
respectively. The tokenization dictionary is replaced by a class, too.

Key words: language, classes, minimal pairs, optimization, dictionaries,
Python.

394

