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1. Introduction

The meat production chain is a highly complex 
system that involves various stages and stakehold‑
ers, beginning with Pre‑harvest (feed, farm bios‑
ecurity, herd/flock health status, animal welfare, 
transportation, livestock market/abattoir lairage), 
followed by Harvest (slaughter, dressing, chilling) 
and Post‑harvest (deboning, meat processing, pack‑
aging, distribution, retail, consumer) modules. Over 
the previous decade, consumer awareness increased 
globally towards animal health, animal welfare and 

food safety issues and consumers demand proper and 
accurate information on the aforementioned issues 
in real‑time for making informed choices when buy‑
ing their preferred meat/meat products. The meat 
production system is also facing climate change 
impacts, recognized as the change of trends of global 
temperatures, precipitations and wind patterns, that 
are attributed directly or indirectly to human activ‑
ity (UNFCCC, 1992), with extreme events becom‑
ing more frequent, severe and unpredictable. These 
events may jeopardize food security by influenc‑
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ing various biological contaminants, including food 
borne hazards, and altering their occurrence, viru‑
lence and distribution and increasing the exposure 
of consumers (FAO, 2022). For example, the poten‑
tial association between rising temperatures and 
increased levels of antimicrobial resistance (AMR) 
in certain zoonotic food (meat) borne pathogens has 
been observed, e.g., Campylobacter spp., Salmonel-
la spp., Listeria monocytogenes, Escherichia coli. 
Furthermore, these pathogens are showing increased 
resistance, in particular, to Critically Important Anti‑
biotics (CIA), reducing the efficacy and quality of 
clinical treatments (Poirel et al., 2018; Van Puyvelde 
et al., 2019; WHO, 2019). Another challenge relat‑
ed to the meat chain is its sustainability and envi‑
ronmental impact of the livestock production chain 
which contributes a certain share to anthropogenic 
Greenhouse Gas (GHG) emissions (FAO, 2022).

Mitigation strategies that include improve‑
ment of animal health and welfare can significant‑
ly reduce emissions. To achieve that goal, the spec‑
ificity of livestock production and local production 
systems should be taken into consideration (Özkan 
et al., 2022). A new challenge is related to the pro‑
cess control of cell‑based meat, which is based on 
culturing cells isolated from animals, followed by 
processing to produce food products that are com‑
parable to the corresponding animal versions. The 
potential food safety hazards are associated with 
cell selection (faecal‑borne pathogens), production 
(Mycoplasma), harvesting (biological components, 
such as growth factors and hormones from animal 

serum), food processing and formulation (addi‑
tives, ingredients, nutrients) (FAO, 2022b), but can 
be tackled more efficiently with smart application of 
biosensors.

2. Biosensor application in the meat chain

Application of biosensors in the farm‑abattoir 
continuum has a wide range of possibilities and can 
contribute to and provide significant benefits in the 
optimization of livestock farm management practices.

2.1. Definition and structure of biosensors

A biosensor is a device which recognizes a target 
biomarker (e.g. pathogen, stress hormone, acute phase 
protein, viruses, etc.) via an immobilized sensing ele‑
ment called a bioreceptor (monoclonal antibody, 
RNA, DNA, aptamer, glycan, lectin, enzyme, tissue, 
whole cell). It has rapid, sensitive and specific detec‑
tion capabilities. The typical biosensor system consists 
of a sensing element with bioreceptor and transduc‑
er that converts the signal into a corresponding elec‑
trical signal suitable for processing and visualization 
(Figure 1). The choice of biosensor type depends on 
the targeted biomarker, the nature of the analyte, the 
desired sensitivity and the intended application.

There are different types of biosensors based on 
the biological recognition element (bioreceptor) and 
the transducer used. For example, electrochemical 
biosensors, piezoelectric biosensors, field-effect tran-
sistor (FET) biosensors and magnetic biosensors.

Figure 1. Biosensor with biosensing electrode (bioreceptor) and transducer that convert targeted biosignal to 
electrical one
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2.2. Biosensors application in the farm-abattoir 
continuum

Biosensors, as point‑of‑care (PoC) devices, 
have the potential to detect and quantify physiolog‑
ical, immunological and behavioural responses of 
livestock and multiple animal species (Neethirajan 
et al., 2017) in the farm‑abattoir continuum. They 
present the lab‑on‑a‑chip concept as an alternative to 
the commonly used methods such as enzyme‑linked 
immunosorbent assay (ELISA) and/or reverse tran‑
scription polymerase chain reaction (RT‑PCR) that 
require adequate environment and space, specifical‑
ly trained personnel and are time‑demanding and 
more expensive.

2.2.1 Biosensors on the farm

Application of biosensors on‑farm has a wide 
range of technically available opportunities relat‑
ed to behavioural aspects of livestock connected 
with their feeding dynamics, e.g. mechanical sen-
sors (jaw movement) (Rutter, 2000) or accelera-
tion sensors (feeding behaviour) (Herinaina et al., 
2016). Furthermore, biosensors able to detect met‑
abolic conditions are available, such as perspiration 
metabolite biosensors (e.g., physical stress via anal‑
ysis of sweat for sodium and lactate levels) (Schaz-
mann et al., 2010), biosensors for salivary detection 
of metabolites (cortisol) (Yamaguchi et al., 2013) or 
tears analysis biosensors (glucose sensor) (La Belle 
et al., 2014) or breath analyses biosensors (detec‑
tion of Volatile Organic Compounds — VOCs, e.g. 
ketosis) (Leopold et al., 2014), Bovine Respiratory 
Diseases (BRD) (Burciaga-Robles et al., 2009), bru‑
cellosis (Knobloch et al., 2009), bovine tuberculosis 
(Fend et al., 2005), Johne`s diseases (Kumanan et 
al., 2009), ketoacidosis (Mottram et al., 1999), foot 
and mouth (FMD) disease (Christensen et al., 2011). 
Other biosensors for the detection of animal dis‑
ease include detection of H7N1 antibodies for Avian 
Influenza virus (AIV) (Wang et al., 2009) or detec‑
tion of specific acute phase proteins such as biosen‑
sor for detection of mastitis (based on haptoglobin 
detection) (Martins et al., 2019). Biosensors for the 
detection of stress in fish also have been developed 
to respond to stressors (changes in water chemis‑
try, dissolved oxygen content, pH and metal toxic‑
ity) associated with water pollution and changes in 
climate, including behavioural changes (attacking 
behaviour and visual irritation) (Wu et al., 2015a).

2.2.2 Biosensors in the abattoir

The regulatory‑based or routine usage of bio‑
sensors for the purposes of meat production con‑
trol and monitoring is not available. However, the 
recent advancement in design of biosensors enabled 
rapid and reliable qualitative and quantitative detec‑
tion of food(meat)borne pathogens, such as later‑
al flow aptamer‑based biosensors for point‑of‑care 
detection of Salmonella enteritidis and Escherichia 
coli O157:H7 with sensitivity level of 101 CFU/ml, 
respectively (Fang et al., 2014; Wu et al., 2015b), 
Campylobacter in meat (poultry) samples with 
detection level of 1.5 × 101 CFU/g (DNA‑based sen‑
sor) (Manzano et al., 2015), toxins of Clostridium 
perfringens (mammalian cell‑based sensors) (Yoo 
et al., 2016), Escherichia coli (antibody‑based or 
conductometric‑based biosensors) at detection lev‑
els from 1 to 103 CFU/mL (Jaffrezic-Renault et al., 
2007; El Ichi et al., 2014). Biosensors in the abattoir 
can be also used for environmental control/monitor‑
ing of the condition of abattoir wastewater via detec‑
tion of Biochemical Oxygen Demand (BOD), which 
is a widely used parameter to describe the level of 
organic pollution in water and wastewaters (Chee et 
al., 1999). However, the performance of biosensors 
in the farm‑abattoir continuum is constrained in vit-
ro with the enriched bacterial suspensions encoun‑
tered, and there is scarcity of data regarding the 
matrix (e.g. straw, faeces, blood) from the real oper‑
ational environment (farm, abattoir), which requires 
further and deeper research.

2.3. Biosensors, meat production and climate 
change

Livestock is a potential climate change driver, 
generating up to 14.5% of total anthropogenic GHG 
emissions (Cheng et al., 2022). The conclusions drawn 
from similar studies should be taken with precaution, 
having in mind that these studies mainly considered 
the intensive farming livestock production systems 
and not extensive systems (e.g., rotational grazing sys‑
tem), which might even have a positive environmental 
impact by allowing vegetation to recover and reduc‑
ing gas emissions via enhancing carbon storage and 
reducing the need for intensive feed production. Bio‑
sensing technology, integrated in precision livestock 
farming, can be an important tool in monitoring solu‑
tions for reduction of GHG emissions that originate 
from intensive livestock farming and, thus, facilitating 
the climate change mitigation, including environmen‑
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tal and agricultural sustainability (Griesche and Bae-
umner, 2020; Wang et al., 2022). This type of biosen‑
sor technology should become the key component of 
climate‑smart agriculture and “4th revolution” in the 
agri‑food chain (FAO, 2015).

2.4. Biosensors and cell-based meat

The in‑line monitoring of the bio‑process of 
meat cultivation in bioreactors can improve the effi‑
ciency and consistency of cell‑based (`cultured` or 
`cultivated` or `clean`) meat production. Recently, 
cell‑based food production (growing animal‑based 
agricultural products directly from cell cultures), has 
been explored as a sustainable alternative to the con‑
ventional livestock and food of animal origin sys‑
tem, to satisfy the needs of increasing global demand 
for animal‑source protein (OECD-FAO, 2022; FAO/

WHO, 2023). The prototype biosensors are under 
development to enable in‑situ measurements of bio‑
mass, nutrient and metabolite quantities in specific 
growth media (Good Food Institute, 2020).

3. Conclusions

The regular and routine introduction of bio‑
sensors can facilitate the transformation of the 
whole food (meat) value chain `from farm to fork` 
(via advanced Food Chain Information flow in the 
farm‑abattoir continuum), by enabling continuous 
monitoring and/or early detection of animal disease 
and food safety hazards, so providing more sustaina‑
ble and climate‑friendly meat production, by reduc‑
ing GHG emissions (via optimized nutrition, animal 
health and welfare), and by reduction of food waste.
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