
Scientific paper

The Enhanced Versions of the Program
“Ka Minimalnim Parovima”
(Towards Minimal Pairs)

UDC 81’322.2
DOI 10.18485/infotheca.2022.22.1.1

ABSTRACT: The program KaMP finds
word pairs whose members are segmentally (in
terms of speech) different only by two selected
factors (Deza and Deza 2016, 215), each factor
with length 1 or more, e.g. p�eć ∼ p�et, f‚ilma ∼
f�irma, istòrizovati ∼ majòrizovati, p‚esničkī ∼
pol̀itičkī. The paper introduces the faster vari-
ants of KaMP with improved sorting and with
a supplementary mode.
KEYWORDS: phonetics, phonology,
natural language processing, corpus
linguistics, Python.

PAPER SUBMITTED: 11 January 2022
PAPER ACCEPTED: 11 May 2022

Danilo Aleksić
danilo.aleksic@fil.bg.ac.rs
University of Belgrade
Faculty of Philology
Belgrade, Serbia

Lazar Mrkela
lazar.mrkela@metropolitan.ac.rs
Belgrade Metropolitan
University, Faculty of
Information Technologies
Belgrade, Serbia

1 Introduction

According to (Bugarski 2003, 128), minimal pairs are pairs in which two
semantically distinct words formally differ in one phoneme only, e.g b‚as ∼
č‚as.1 Ignoring prosody and letter case, in a Serbian corpus, the program
Ka minimalnim parovima (Towards Minimal Pairs; Алексић and Шандрих
2021) finds word pairs whose members formally differ from each other by
selected substrings2 only. The corpus needs to be UTF-8 encoded. Apart

1. Ivić (1961–1962, 75) mentions prosodic systems with thousands of minimal
pairs of words ie. pairs of forms differentiated by prosodic contrasts exclusively.
Such pairs are v‚ila ∼ víla, l�oza (the genitive form of loz ‘lottery ticket’) ∼ lòza etc.

2. Globally it holds true that every string is a substring of itself (Partee, Meulen,
and Wall 1993, 433; Singh 2009, 33) and that a string can be of length 1 (Partee,
Meulen, and Wall 1993, 432; Python 2021b). Therefore, it would not be a mis-
nomer to refer as a substring to (i) the string "ima" from the regular expression
\b\S*ima\S*\b observed in relation to a match "ima", nor to (ii) the character
"a".

Infotheca Vol. 22, No. 1, June 2022 7

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

from the selected substrings, the “words” can contain (i) characters from "A"
to "Z", from "a" to "z" and from "Ć" to "ž" in the corresponding Unicode
charts and (ii) hyphens in medial position.

Content of the
input file

Selected
substrings

String for the output

"Klima-uredaji pre
klima-uredaja"

"a", "i" "klima-uredaja ∼ Klima-uredaji"
(or "Klima-uredaji ∼
klima-uredaja")

"α-čestica,
α-čestice,
α-čestici"

"a", "e" "čestica ∼ čestice"

"α-čestica,
β-čestica"

"α", "β" "α-čestica ∼ β-čestica"

Table 1. KaMP: Examples of input and output

The program can be of use to teachers of Serbian as a foreign language
and to linguists (Алексић and Шандрих 2021, 574–75).

Field Selected
substrings

Utilization

Teaching Serbian as
a foreign language

"c", "č" Basis for a task in an exercise:
“C or č?
1) Šta bi ti uradio, dragi čitao_e?

Naše novine će poštovati svoje
čitao_e.

2) [...]”
Derivatology "auto",

"samo"
Data on competition between the
segments auto- and samo-.

Table 2. KaMP: Examples of utilization

In the present paper the authors are publishing and commenting on the
improved versions of KaMP which they built, KaMP 2 and KaMP 2.1.3

3. V. Appendix 1.

8 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

KaMP 2 and KaMP 2.1 are natural language processing tools if natural
language processing is taken “in a wide sense to cover any kind of computer
manipulation of natural language” (Bird, Klein, and Loper 2009, ix), because
the two programs do not accent even a small number of all Serbian words, but
process Serbian language superficially. Being somewhat adapted to searching
large corpora, the new KaMPs are modest contributions to corpus linguistics
as well if it is defined e.g. as “the computer-aided analysis of very extensive
collections of transcribed utterances or written texts” (McEnery and Hardie
2012, i).

KaMP 2 and KaMP 2.1 were coded in Python 3.8.2 (Python 2021a).
Python is “a high-level, interpreted, general-purpose programming lan-
guage” (Pajankar 2020, 52). This language is “both elegant and pragmatic,
both simple and powerful”; “it’s suitable for programming novices as well as
great for experts, too” (Martelli, Ravenscroft, and Holden 2017, ix). Python
“is becoming more and more popular, and in 2017 it became the most popular
language in the world according to IEEE Spectrum” (Shovic and Simpson
2021, 1). Python is “the most widely used language for natural language
processing” (Antić 2021, vii). It “may be expected” that Python be “slow
as compared to compiled languages”, but it is faster “[i]f you start the clock
to account for developer time, not just code runtime” (Unpingco 2021, 2).
Python was created by the Dutch programmer Guido van Rossum in the
late 1980s (Cicolani 2021, 41; Rajagopalan 2021, 1).

2 Similar resources

Four tools for finding minimal pairs or “phonological neigh-
bours” (Mairano and Calabrò 2016, 258) which were written before KaMP
are listed in (Алексић and Шандрих 2021, 569). The Python 3 package Min-
pair (PyPI 2021) and the short program in Python 2.7 from the page (Stack
Overflow 2021a) can be added to that list.

Minpair looks for “minimal pairs (and minimal sets) for [only monosyl-
labic – D. A.] US English words”. The user selects two or more “vowel phono-
logical element[s]” by which the members of the minimal pairs or minimal
sets will differ. Minpair (A) uses defaultdict to group the words by the
accompanying transcriptions in which (B) the package replaced the chosen
vowels with a dot by means of a regular expression and the enumerate()
function.

Infotheca Vol. 22, No. 1, June 2022 9

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

The approach A has a general parallel, but somewhat more efficient (v.
Appendix 2), in KaMP 2.1. KaMP 2.1 pairs words by means of a standard
dictionary (v. Appendix 1).

The approach B has a general parallel, but much more efficient (v. Ap-
pendix 3), in KaMP 2 and KaMP 2.1. KaMP 2 and KaMP 2.1 replace
the selected elements with the special string by means of the methods
str.replace() and str.format() (v. Appendix 1).

cmudict entry Tuple for grouping
("cat", ["K", "AE1", "T"])

("K", ".", "T")
("coat", ["K", "OW1", "T"])

Table 3. Minpair: An example of input and of the tuple for grouping (if the
selected vowels are "AE" and "OW")

1 # Minpair: Examples of use 1 and 2
2 import minpair
3 print(minpair.vowel_minpair (["AO", "ER"]) [12:13])
4 # Output: [{’AO’: ’saw’, ’ER’: ’sir’}]
5

6 print(minpair.vowel_minpair (["AA", "AO", "EH"]) [6:7])
7 # Output: [{’AO’: ’dawn’, ’EH’: ’den’, ’AA’: ’don’}]

Part(s) of speech can also be chosen by the user.

1 # Minpair: Examples of use 3, 4 and 5
2 import minpair
3 print(minpair.generator(pos=["ADV"]).vowel_minpair(
4 ["AH", "EH"]))
5 # Output: [{’AH’: ’once’, ’EH’: ’whence’}]
6

7 print(minpair.generator(
8 pos=["ADJ", "VERB"]).vowel_minpair(
9 ["AE", "IH"])[:1])

10 # Output: [{’AE’: ’bad’, ’IH’: ’bid’}]
11

12 print(minpair.generator(
13 pos=["ADJ", "VERB"]).vowel_minpair(
14 ["AE", "IH"]) [22:23])
15 # Output: [{’AE’: ’sang’, ’IH’: ’sing’}]

10 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

The word source(s) cannot be chosen by the user. Minpair “depends on a
few NLTK’s corpora, namely: brown, cmudict, universal_tagset, and words
corpus”.

The code from the page (Stack Overflow 2021a) pairs strings which differ
by one character and have the same length. The strings must be inside e.g. a
list, but they do not have to meet any natural language conditions (they do
not have to come from a specific language or be written in a specific script,
or even consist of alphabetic characters). During the execution of the code,
every input string is compared to every subsequent input string, character
by character. If all characters but one are the same, the pair of strings is
printed.

1 # (Stack Overflow 2021a)
2 for n1,word1 in enumerate(wordlist):
3 for word2 in wordlist[n1+1:]:
4 if len(word1)==len(word2):
5 ndiff=0
6 for n,letter in enumerate(word1):
7 if word2[n]!= letter:
8 ndiff +=1
9 if ndiff ==1:

10 print word1 , word2
11

12 """The program from the page (Stack Overflow 2021a): Example of use 1
13 (added by D. A.)
14 Input: ["kula", "kule", "kuli", "kulom"]
15 Output:
16 kula kule
17 kula kuli
18 kule kuli
19 """

This code is case sensitive in handling all characters except the differential
one.

1 """The program from the page (Stack Overflow 2021a):
2 Examples of use 2 and 3
3 Input: ["kula", "kulE", "kuli", "kulom"]
4 Output:
5 kula kulE
6 kula kuli
7 kulE kuli
8

Infotheca Vol. 22, No. 1, June 2022 11

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

9 Input: ["kula", "Kule", "kuli", "kulom"]
10 Output:
11 kula kuli
12 """

When the first string in the input list was followed by its duplicate, the
same pair was printed twice.

1 """The program from the page (Stack Overflow 2021a): Example of use 4
2 Input: ["kula", "kula", "kule", "kulom"]
3 Output:
4 kula kule
5 kula kule
6 """

Minpair (Stack
Overflow
2021a)

KaMP 2
and
KaMP 2.1

The tool prints such string pairs
in each of which the strings differ
by any character in the given
position.

× ✓ ×

The differential elements are
chosen by the user.

✓ × ✓

The number of selected
differential elements does not have
to be 2.

✓ ×

The selected differential elements
do not have to be vowels.

× ✓

The words do not have to differ
by a sequence of only one phoneme
or of only one character.

× × ✓

The input is chosen by the user. × ✓ ✓

The input does not have to be
tokenized.

× ✓

Table 4. KaMP 2 / KaMP 2.1 compared to similar tools

12 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

3 Notable new characteristics of KaMP 2 and KaMP
2.1

In the preparatory part of the algorithm, tuples for the compar-
ison of words are formed, such as ("Avali", "avali", " v li"),
("Požeškom", "požeškom", "pož škom"), ("sekretarijata",
"sekretarijata", "s kr t rij t "). The first member of
the comparison tuple is a word that contains one or both selected sub-
strings. The second member is the casefolded first member. The third
member is the second member in which at least one instance of the first
selected substring or of the second selected substring has been replaced
with the string " "4. One excerpted word can have one word with the
replacement of the selected substrings (see Table 5) or, (i) when the selected
substrings have an “overlap” (Lothaire 2005, 7) or (ii) when one selected
substring is “a proper substring” (Böckenhauer and Bongartz 2007, 24) of
the other selected substring, more than one word with the replacement of a
selected substring (see Table 6).

Comparison strings
Excerpted word Casefolded excerpted

word
Casefolded excerpted
word in which the
selected substrings were
replaced

"Knjiga" "knjiga" "knjig "
"knjigu" "knjigu" "knjig "
"sveska" "sveska" "svesk "
"SVESKU" "svesku" "svesk "
"računaljku" "računaljku" "r č n ljk "

Table 5. KaMP 2 / KaMP 2.1: Examples of comparison strings (if the selected
substrings are "a" and "u")

In the main part of the algorithm, the formed tuples are compared.
KaMP 2 generates all possible two-member combinations of the tuples with
the first selected substring and the tuples with the second selected substring

4. It was chosen because it is conspicuous and relatively rare. Of course, those
traits are present in many other strings.

Infotheca Vol. 22, No. 1, June 2022 13

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

Comparison strings
Excerpted word Casefolded excerpted

word
Casefolded excerpted
word in which one of
the selected substrings
was replaced

"ONA" "ona" "on "
"Onima" "onima" "on "
"Onima" "onima" "onim "
"onimima" "onimima" "onim "
"onimima" "onimima" "onimim "

Table 6. KaMP 2 / KaMP 2.1: Examples of comparison strings (if the selected
substrings are "a" and "ima")

and then skips the unwanted combinations. This program obtains the possi-
ble two-member combinations by calculating the Cartesian product5 of the
two groups of tuples. KaMP 2.1 transforms the tuples with the second se-
lected substring into a hash map (table) and checks whether it contains the
words with replacement taken from the tuples with the first selected sub-
string. The map’s key is the word with replacement, and the value of the
map is a map of the words from which that same key is obtained. – KaMP 2
and KaMP 2.1 print those pairs of excerpted words whose members (i) differ
when casefolded and (ii) match by the words with replacement, i.e. pairs
of those words which differ by the selected substrings only. For example, if
the selected substrings are "a" and "u", and the input file only contains the
string "Knjiga, knjigu, sveska, SVESKU", KaMP 2 and KaMP 2.1 will
not print the strings "Knjiga ∼ SVESKU" and "knjigu ∼ sveska", since
the string "knjig " is not equal to the string "svesk ". The programs
will print the strings "Knjiga ∼ knjigu" and "sveska ∼ SVESKU".

KaMP 2 and KaMP 2.1 have (A) a mode in which they ignore case but
favor strings of lowercase letters and (B) a mode in which e.g. excerpted
strings "vitraž" and "Vitraž" would be processed as separate words (see
Table 7). The reason is the justified comment from (Алексић and Шандрих
2021, 574) which raises the question of the importance of case. For example,

5. For example, the Cartesian product of the set of strings {"broj",
"ulica"} and the set of strings {"MESTO", "OPŠTINA"} is the set of tuples
of strings {("broj", "MESTO"), ("broj", "OPŠTINA"), ("ulica", "MESTO"),
("ulica", "OPŠTINA")}.

14 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

in teaching Serbian as a foreign language proper nouns sometimes have pri-
ority over non-proper words. The name Čak (Beri, Noris...) is suitable for
a pronunciation exercise with photos; what kind of photo would depict the
meaning of the uninflected word čak? In the mode B, from the corpus POL,
KaMP 2 and KaMP 2.1 extract not only the pair "čak ∼ Žak", but also
the pair "Čak ∼ Žak" (alongside "Čak ∼ ŽAK" etc.).6

Content of the input
file

"EUPRAVE, eUprave,
euprave, EUPRAVA,
eUprava, euprava"

String for the output
of KaMP

"EUPRAVA ∼ EUPRAVE" (or
"EUPRAVE ∼ EUPRAVA")

String for the output
of KaMP 2 and
KaMP 2.1 in the mode
A

"euprava ∼ euprave"

Strings for the output
of KaMP 2 and
KaMP 2.1 in the mode
B

"euprava ∼ euprave",
"euprava ∼ eUprave",
"euprava ∼ EUPRAVE",
"eUprava ∼ euprave",
"eUprava ∼ eUprave",
"eUprava ∼ EUPRAVE",
"EUPRAVA ∼ euprave",
"EUPRAVA ∼ eUprave",
"EUPRAVA ∼ EUPRAVE"

Table 7. KaMP and KaMP 2 / KaMP 2.1: Case (in)sensitivity (if the selected
substrings are "a" and "e")

The function corpus_segmentation()7 has been reorganized. It no
longer reads the corpus using an infinite while-loop,8 but, following the

6. Capital first letter is no guarantee that "Čak" can be a name in POL (because
of sentences like "Čak sam pronašao i kupca."). An additional search proves that
it can ("Čak Blekvel", "Čak Dejli", "Čak Noris"...).

7. This is a generator function which partitions the input corpus so that little
RAM is used, in such a way as not to cut individual words apart (Алексић and
Шандрих 2021, 572, 581).

8. Cf. the code which was added on May 14th 2021 to the answer which was
posted to (Stack Overflow 2021b) on June 11th 2015.

Infotheca Vol. 22, No. 1, June 2022 15

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

example of the recommended way to call a function until a sentinel value
from (Hettinger 2021, 12.27 and onwards), using a for-loop, which is “fast
and beautiful”.

KaMP sorts the found pairs by the Unicode code positions of single
letters, while KaMP 2 and KaMP 2.1 sort the found pairs by the positions
of single letters in the strings lower_alphabet and upper_alphabet (see
Table 8).

1 # The sorting strings in KaMP 2 and KaMP 2.1
2 lower_alphabet = "- ~abc č ćddefghijklmnopqrs š tuvwxyz ž"
3 upper_alphabet = "- ~ABC Č ĆDDEFGHIJKLMNOPQRS Š TUVWXYZ Ž"

Input list [
"nota ∼ note",
"daka ∼ dake",
"Bač ∼ Beč"

]
Input list after being
sorted in the way
KaMP sorts pairs

[
"Bač ∼ Beč",
"nota ∼ note",
"daka ∼ dake"

]
Input list after being
sorted in the way
KaMP 2 and
KaMP 2.1 sort pairs

[
"Bač ∼ Beč",
"daka ∼ dake",
"nota ∼ note"

]

Table 8. KaMP and KaMP 2 / KaMP 2.1: Sorting of the pairs

Truth be told, the new KaMPs use the Unicode code positions as well
when they sort pairs, but only for characters which the sorting strings do
not contain (see Table 9).

16 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

Pair Sorting list The origin
of the
number

α 945 Unicode
- 0 The string

lower_alphabetz 32
r 23
a 3
č 6
e 10
n 19
j 15
e 10

1
∼ 2

1
β 946 Unicode
- 0 The string

lower_alphabetz 32
r 23
a 3
č 6
e 10
n 19
j 15
e 10

Table 9. KaMP 2 / KaMP 2.1: An example of the sorting list

KaMP 2 and KaMP 2.1 sort the members of every pair before joining
them into an output string (e.g. ["knjigu", "Knjiga"] → ["Knjiga",
"knjigu"]).

4 Execution speed

Speed was measured in Python 3.8.2, on Manjaro Linux, with a computer
with the processor i5-11600K and two DDR4-3200 CL16 SDRAMs (16 GB

Infotheca Vol. 22, No. 1, June 2022 17

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

each) and on the POL corpus, which has around 117,900,900 words from
223,308 texts from the Politika website (Алексић and Шандрих 2021, 575).9

5 A short assessment of the efficiency of KaMP 210

The function which finds pairs in KaMP 2 is based on the Cartesian
product of two lists. This approach is an elegant solution in terms of layout
and complexity of the code, but it is not efficient enough in the case of lists
with large numbers of elements, because of quadratic behavior. The prob-
lem is easily noticed in the experimental results, where significantly longer
execution time is observed in the case of more frequent substrings (ma-va;
cf. Table 10).

6 Further work

In real conditions, which may demand that this program be run on weaker
computers, just reading the corpus and excerpting the words which contain
the selected substrings can last for too long. For example, reading the cor-
pus POL.xml on an older laptop computer (Acer Aspire 3, Intel Quad Core
N3710, 4GB RAM) lasts up to approximately 15 minutes. The recommen-
dation is that the option to create a disk-stored dictionary be added. This
processing of the corpus would be conducted just once, and the dictionary
would later be used to search for pairs by new substrings.

The next possible step in shortening the execution time is search par-
allelization. Nowadays, even the weaker computers have several “cores” in
their processors (for example, the computer from the previous paragraph
has 4 cores). That is why it is possible to execute some parts of the code in
parallel and thus additionally speed up the program. A suggestion for simple
parallelization is the division of one of the lists into n parts, and then the
processing of those parts on separate processors (cores) in parallel. Seeing
that the sequential version with hashing is already very efficient, the problem
of the slow reading of the corpus should be solved first, and only then should
further speeding up be considered.

9. All the results come from measuring the execution speed of the code from
the Serbian version of this paper.

10. Sections 5 and 6 were written by L. Mrkela. The other sections (without
the two sentences in Section 3 which only concern KaMP 2.1), Appendix 2 and
Appendix 3 were written by D. Aleksić.

18 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

S
el

ec
te

d
su

b
st

ri
n
gs

Speed in seconds
(the average of five
successive
measurements)

K
aM

P

KaMP 2 KaMP 2.1

M
od

e
A

M
od

e
B

M
od

e
A

M
od

e
B

"č
",

"d
"

334 199 246 67 66

"d
ž"

,
"d

"

135 81 85

"n
ad

na
d"

,
"s

up
er

su
pe

r" 6639 65.79 65.51 66.38 66.09

"i
r"

,
"z

ir
" 143 86 90 67 (!) 66

"m
a"

,
"v

a"

2153 1257 1516

Table 10. KaMP, KaMP 2 and KaMP 2.1: Execution speed

7 Conclusion

In comparison to KaMP, KaMP 2 and KaMP 2.1 achieve more in less
time – they find virtually the same pairs and sort the pairs and the words
inside the pairs in a better way.

KaMP 2.1 was inarguably faster than KaMP 2 in the majority of the
investigated cases.

Infotheca Vol. 22, No. 1, June 2022 19

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

Appendix 1. KaMP 2 and KaMP 2.111

1 """KaMP 2.1 is a modified version of KaMP 2. KaMP 2 is
2 a modified version of KaMP.
3

4 The pairing in the functions KaMP_2_1_a() and KaMP_2_1_b()
5 was written by L. Mrkela, and the rest of the code
6 (with the functions excerp_(), proc_words_1() and proc_words_2())
7 was written by D. Aleksić.
8 """
9

10

11 def main():
12 from functools import partial
13 from itertools import product
14 import re
15 import sys
16

17 sys.stdout.reconfigure(encoding="utf -8")
18 """V. (Алексић and Шандрих 2021, 580)."""
19 letter_1 = "ma".casefold ()
20 letter_2 = "va".casefold ()
21 overlap_ = False
22 case_diff = False
23 sort_char = chr (1114111)
24 lower_alphabet = "- ∼abcčćddefghijklmnopqrsštuvwxyzž"
25 upper_alphabet = "- ∼ABCČĆDDEFGHIJKLMNOPQRSŠTUVWXYZŽ"
26

27 def join_strings (* strings):
28 return "".join(strings)
29

30 def corpus_segmentation(
31 corpus_ , size_ =8192 , separator_="\n"):
32 """Cf. (581).
33 The function returns parts of the corpus which have
34 the specified size. The cuts between the parts are
35 made at the specified separator.
36 """

11. The official documentation, from the site (Python 2021a), was the primary
source. The other sources were indicated by directing to links from the References,
by directing to the corresponding parts of (Алексић and Шандрих 2021) and by
directing to a part of this paper.

20 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

37 remainder_ = ""
38 for piece_ in iter(
39 partial(corpus_.read , size_), ""):
40 """V. (Hettinger 2021, 12.27 and onwards)."""
41 piece_ = join_strings(remainder_ , piece_)
42 if separator_ in piece_:
43 pieces_ = piece_.rsplit(separator_ , 1)
44 """V. (W3Schools 2021)."""
45 yield pieces_ [0]
46 remainder_ = pieces_ [1]
47 else:
48 remainder_ = piece_
49 if remainder_:
50 yield remainder_
51

52 def lower_first_1(word_):
53 """The key for word sorting which favors the words
54 consisting of lowercase letters.
55 """
56 if word_.islower ():
57 return "!"
58 elif word_.istitle ():
59 return sort_char
60 else:
61 for letter_ in word_:
62 if letter_.isupper ():
63 word_ = word_.replace(
64 letter_ , sort_char)
65 return word_
66

67 def lower_first_2(word_):
68 """The key for sorting the found pairs.
69 The pairs which contain less uppercase letters will
70 be at the top of the list.
71 """
72 if word_.islower ():
73 return "!"
74 else:
75 word_ = word_.replace(" ~ ", "")
76 if word_.istitle ():
77 return sort_char
78 else:
79 for letter_ in word_:

Infotheca Vol. 22, No. 1, June 2022 21

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

80 if letter_.isupper ():
81 word_ = word_.replace(
82 letter_ , sort_char)
83 return word_
84

85 def indexing_for_list(word_):
86 """Cf. (Stack Overflow 2021c).
87 The key for sorting in the specified order.
88 """
89 sort_list = []
90 for letter_ in word_:
91 if letter_ in lower_alphabet:
92 sort_list.append(
93 lower_alphabet.index(letter_))
94 elif letter_ in upper_alphabet:
95 sort_list.append(
96 upper_alphabet.index(letter_))
97 else:
98 sort_list.append(ord(letter_))
99 return sort_list

100

101 def simple_word_repl(word_):
102 """The selected substrings of words are replaced by
103 the special string.
104 """
105 if letter_1 in word_ and letter_2 not in word_:
106 word_with_repl = word_.replace(
107 letter_1 , "\u23B2")
108 elif letter_1 not in word_ and letter_2 in word_:
109 word_with_repl = word_.replace(
110 letter_2 , "\u23B2")
111 elif letter_1 in word_ and letter_2 in word_:
112 word_with_repl = word_.replace(
113 letter_1 , "\u23B2")
114 word_with_repl = word_with_repl.replace(
115 letter_2 , "\u23B2")
116 return (word_with_repl ,)
117

118 def complex_word_repl(word_ , letter_):
119 """The specified substrings in words are replaced
120 with the special string.
121 The cases when there is overlap between the selected
122 substrings are covered.

22 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

123 V. (Алексић and Шандрих 2021, 580–-81).
124 """
125 output_set = set()
126 word_for_proc = word_.replace(letter_ , "{}")
127 for combination_ in product(
128 [letter_ , "\u23B2"],
129 repeat=word_for_proc.count("{}")):
130 word_with_repls = word_for_proc.format(
131 *combination_)
132 if word_with_repls != word_:
133 output_set.add(
134 word_with_repls)
135 return output_set
136

137 def letter_repl(word_):
138 if not overlap_:
139 return simple_word_repl(word_)
140 else:
141 set_ = set()
142 set_.update(
143 complex_word_repl(word_ , letter_1),
144 complex_word_repl(word_ , letter_2))
145 return set_
146

147 def tokenization_ ():
148 """The corpus is transformed into a dictionary of
149 words which were gathered by means of a regular
150 expression. The function enables the program to
151 avoid the use of very complex regular expressions
152 in the cases when the selected substrings are
153 long (see Table 10).
154 Cf. Section 6.
155 """
156 dict_ = {}
157 with open(r"/home /.../ POL.xml",
158 "r", encoding="utf -8") as corpus_:
159 pieces_ = corpus_segmentation(corpus_)
160 for piece_ in pieces_:
161 matches_ = re.findall(
162 "[A-Za-zĆ-ž-\u00ad]+", piece_)
163 """V. (573–-74)."""
164 for match_ in matches_:
165 word_ = match_.strip("-")

Infotheca Vol. 22, No. 1, June 2022 23

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

166 if "\u00ad" in word_:
167 word_ = word_.replace(
168 "\u00ad", "")
169 """V. (Алексић and Шандрих 2021, 581)."""
170 dict_[word_] = word_.casefold ()
171 return dict_
172

173 def excerp_(letter_):
174 """The words which contain the selected substring
175 are taken from the dictionary into which the corpus
176 has been transformed.
177 """
178 return (key_
179 for key_ , value_
180 in corpus_dict.items()
181 if letter_ in value_)
182

183 def descartes(list_1 , list_2):
184 """The unwanted pairs are eliminated from the
185 Cartesian product of the processed words.
186 """
187 return (
188 (* sorted ([b, e]), a, d)
189 for (a, b, c), (d, e, f)
190 in filter(
191 lambda tuple_: tuple_ [0][2] == tuple_ [1][2]
192 and tuple_ [0][1]
193 != tuple_ [1][1] ,
194 product(list_1 , list_2 , repeat =1)))
195

196 def proc_words_1(gen):
197 """The function returns tuples which contain words,
198 casefolded words and words with replacement.
199 This is a case insensitive function.
200 """
201 tuple_list = []
202 counter_ = set()
203 word_list = sorted(
204 list(gen), key=lower_first_1)
205 for word_ in word_list:
206 casefold_word = corpus_dict[word_]
207 if casefold_word not in counter_:
208 counter_.add(casefold_word)

24 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

209 for word_with_repl in letter_repl(
210 casefold_word):
211 tuple_list.append(
212 (word_ , casefold_word ,
213 word_with_repl))
214 return tuple_list
215

216 def proc_words_2(gen):
217 """The function returns tuples which contain words,
218 casefolded words and words with replacement.
219 This is a case sensitive function.
220 """
221 tuple_list = []
222 for word_ in gen:
223 casefold_word = corpus_dict[word_]
224 for word_with_repl in letter_repl(
225 casefold_word):
226 tuple_list.append(
227 (word_ , casefold_word ,
228 word_with_repl))
229 return tuple_list
230

231 def KaMP_2_a ():
232 """Final case insensitive processing in KaMP 2.
233 """
234 counter_ = set()
235 for tuple_ in descartes(
236 proc_words_1(excerp_(
237 letter_1)),
238 proc_words_1(excerp_(
239 letter_2))):
240 if (tuple_ [0], tuple_ [1]) not in counter_:
241 counter_.add((tuple_ [0], tuple_ [1]))
242 final_set.add((tuple_ [2], tuple_ [3]))
243 pair_list = [
244 " ~ ".join(sorted(list(tuple_),
245 key=indexing_for_list))
246 for tuple_ in final_set]
247 pair_list.sort(key=indexing_for_list)
248 for pair_ in pair_list:
249 print(pair_)
250 print("\n\tTHE NUMBER OF PAIRS:")
251 print("\t\t", len(pair_list))

Infotheca Vol. 22, No. 1, June 2022 25

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

252

253 def KaMP_2_b ():
254 """Final case sensitive processing in KaMP 2.
255 """
256 final_set = {(tuple_ [2], tuple_ [3])
257 for tuple_ in descartes(
258 proc_words_2(excerp_(
259 letter_1)),
260 proc_words_2(excerp_(
261 letter_2)))}
262 pair_list = [
263 " ~ ".join(sorted(list(tuple_),
264 key=indexing_for_list))
265 for tuple_ in final_set]
266 pair_list = list(set(pair_list))
267 pair_list.sort(key=lower_first_2)
268 pair_list.sort(key=indexing_for_list)
269 for pair_ in pair_list:
270 print(pair_)
271 print("\n\tTHE NUMBER OF PAIRS:")
272 print("\t\t", len(pair_list))
273

274 def KaMP_2_1_a ():
275 """Case insensitive pairing and final processing
276 in KaMP 2.1.
277 """
278 list1 = proc_words_1(excerp_(
279 letter_1))
280 list2 = proc_words_1(excerp_(
281 letter_2))
282 map_ = {}
283 for x in list2:
284 if x[2] not in map_:
285 map_[x[2]] = {}
286 map_[x[2]][x[0]] = x[1]
287 for tuple_ in list1:
288 result = map_.get(tuple_ [2])
289 if result is not None:
290 for k, v in result.items ():
291 if (tuple_ [1] != v and (k, tuple_ [0])
292 not in final_set):
293 final_set.add((tuple_ [0], k))
294 list_ = []

26 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

295 for pair_ in final_set:
296 pair_ = list(pair_)
297 pair_.sort(key=indexing_for_list)
298 output_ = join_strings(
299 pair_[0], " ~ ", pair_ [1])
300 list_.append(output_)
301 list_.sort(key=indexing_for_list)
302 for pair_ in list_:
303 print(pair_)
304 print("The number of pairs: ", len(list_))
305

306 def KaMP_2_1_b ():
307 """Case sensitive pairing and final processing
308 in KaMP 2.1.
309 """
310 list1 = proc_words_2(excerp_(
311 letter_1))
312 list2 = proc_words_2(excerp_(
313 letter_2))
314 map_ = {}
315 for x in list2:
316 if x[2] not in map_:
317 map_[x[2]] = {}
318 map_[x[2]][x[0]] = x[1]
319 for tuple_ in list1:
320 result = map_.get(tuple_ [2])
321 if result is not None:
322 for k, v in result.items ():
323 if (tuple_ [1] != v and (k, tuple_ [0])
324 not in final_set):
325 final_set.add((tuple_ [0], k))
326 list_ = []
327 for pair_ in final_set:
328 pair_ = list(pair_)
329 pair_.sort(key=indexing_for_list)
330 output_ = join_strings(
331 pair_[0], " ~ ", pair_ [1])
332 list_.append(output_)
333 list_.sort(key=lower_first_2)
334 list_.sort(key=indexing_for_list)
335 for pair_ in list_:
336 print(pair_)
337 print("The number of pairs: ", len(list_))

Infotheca Vol. 22, No. 1, June 2022 27

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

338

339 if (letter_1 [-1:] == letter_2 [:1]
340 or letter_1 [:1] == letter_2 [-1:]
341 or (letter_1 in letter_2
342 or letter_2 in letter_1)):
343 overlap_ = True
344 final_set = set()
345 corpus_dict = tokenization_ ()
346 if case_diff:
347 KaMP_2_1_b () # KaMP 2 calls the function KaMP_2_b().
348 else:
349 KaMP_2_1_a () # KaMP 2 calls the function KaMP_2_a().
350

351

352 if __name__ == "__main__":
353 main()

Appendix 2. Minpair vs. KaMP 2.1: Pairing speed

1 """The Minpair approach.
2 """
3 from collections import defaultdict
4

5 map_1 = defaultdict(lambda: {})
6 for x in list_2:
7 map_1[x[2]][x[0]] = x[1]
8

9 """The KaMP 2.1 approach.
10 """
11 map_2 = {}
12 for x in list_2:
13 if x[2] not in map_2:
14 map_2[x[2]] = {}
15 map_2[x[2]][x[0]] = x[1]
16

17 """The input was a list of tuples like ("subsidiaries",
18 "subsidiaries", "subsidi.ri.s"). The list was made of
19 the words from cmudict which contain the substring "a"
20 and/or the substring "e".
21

22 The KaMP 2.1 approach proved itself around 7% faster in

28 Infotheca Vol. 22, No. 1, June 2022

Scientific paper

23 Python 3.8.2 on the system which was described in
24 Section 4. The averages of 500 successive measurements
25 were compared (55 ms : 51 ms).
26 """

Appendix 3. Minpair vs. KaMP 2 / KaMP 2.1:
Replacement speed

1 """The Minpair approach.
2 """
3 vowels_regex = re.compile(r’^(?:%s)’ % ’|’.join(vowels))
4 matches = [vowels_regex.search(phone) for phone in word]
5 list_with_repl = []
6 for i, character in enumerate(word):
7 for j, match in enumerate(matches):
8 if i == j:
9 if match:

10 list_with_repl.append(".")
11 else:
12 list_with_repl.append(character)
13 string_with_repl = "".join(list_with_repl)
14

15 """The KaMP 2 and KaMP 2.1 approach.
16 """
17 word_with_repl = word_.replace(
18 letter_1 , ".")
19 word_with_repl = word_with_repl.replace(
20 letter_2 , ".")
21

22 """The input consisted of the words from cmudict
23 which contain the substring "a" and/or the substring "e".
24

25 The KaMP 2 and KaMP 2.1 approach proved itself around
26 95% faster in Python 3.8.2 on the system which was described
27 in Section 4. The averages of 500 successive measurements
28 were compared (472 ms : 23 ms). However, it must be pointed out
29 that the code for replacing in Minpair gets a list and returns
30 a tuple (e.g. ["L", "UW", "S"] → ("L", ".", "S")), while both
31 the input and the output of the code for replacing in KaMP 2
32 and KaMP 2.1 are a string (e.g "teorijska" → "t orijsk ").
33 """

Infotheca Vol. 22, No. 1, June 2022 29

Aleksić D., Mrkela L., Towards Minimal Pairs. . . , pp. 7–31

References

Antić, Zhenya. 2021. Python Natural Language Processing Cookbook: Over
50 recipes to understand, analyze, and generate text for implementing
language processing tasks. Birmingham: Packt Publishing.

Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural Language Pro-
cessing with Python. Sebastopol, CA: O’Reilly Media.

Böckenhauer, Hans-Joachim, and Dirk Bongartz. 2007. Algorithmic Aspects
of Bioinformatics. Berlin: Springer.

Bugarski, Ranko. 2003. Uvod u opštu lingvistiku. 2nd ed. Beograd: Čigoja
štampa.

Cicolani, Jeff. 2021. Beginning Robotics with Raspberry Pi and Arduino: Us-
ing Python and OpenCV. 2nd ed. Berkeley, CA: Apress.

Deza, Michel Marie, and Elena Deza. 2016. Encyclopedia of Distances.
4th ed. Berlin: Springer.

Hettinger, Raymond. 2021. “Transforming Code into Beautiful, Idiomatic
Python.” Accessed August 21, 2021. https://www.youtube.com/watch?
v=OSGv2VnC0go.

Lothaire, M. 2005. Applied Combinatorics on Words. Cambridge: Cambridge
University Press.

Mairano, Paolo, and Lidia Calabrò. 2016. “Are minimal pairs too few to be
used in pronunciation classes?” In La fonetica nell’apprendimento delle
lingue: Phonetics and language learning, edited by Renata Savy and
Iolanda Alfano, 255–268. Milano: Officinaventuno.

Martelli, Alex, Anna Ravenscroft, and Steve Holden. 2017. Python in a Nut-
shell. 3rd ed. Sebastopol, CA: O’Reilly Media.

McEnery, Tony, and Andrew Hardie. 2012. Corpus Linguistics: Method, The-
ory and Practice. Cambridge: Cambridge University Press.

Pajankar, Ashwin. 2020. Raspberry Pi Computer Vision Programming: De-
sign and implement computer vision applications with Raspberry Pi,
OpenCV, and Python 3. 2nd ed. Birmingham: Packt Publishing.

Partee, Barbara H., Alice ter Meulen, and Robert E. Wall. 1993. Mathemat-
ical Methods in Linguistics. Dordrecht: Kluwer Academic Publishers.

30 Infotheca Vol. 22, No. 1, June 2022

https://www.youtube.com/watch?v=OSGv2VnC0go
https://www.youtube.com/watch?v=OSGv2VnC0go

Scientific paper

PyPI. 2021. “minpair 0.1.3.” Accessed October 26, 2021. https://pypi.org/
project/minpair.

Python. 2021a. Accessed August 21, 2021. https://www.python.org.

Python. 2021b. “Text Sequence Type — str.” Accessed August 21, 2021.
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-
str.

Rajagopalan, Gayathri. 2021. A Python Data Analyst’s Toolkit: Learn
Python and Python-based Libraries with Applications in Data Analy-
sis and Statistics. Berkeley, CA: Apress.

Shovic, John C., and Alan Simpson. 2021. Python All-in-One For Dummies.
2nd ed. Hoboken, NJ: John Wiley & Sons.

Singh, Arindama. 2009. Elements of Computation Theory. London: Springer.

Stack Overflow. 2021a. “Finding (phonological) minimal pairs with python.”
Accessed August 31, 2021. https://stackoverflow.com/q/26157361.

Stack Overflow. 2021b. “Lazy Method for Reading Big File in Python?”
Accessed August 31, 2021. https://stackoverflow.com/q/519633.

Stack Overflow. 2021c. “Sorting string values according to a custom alphabet
in Python.” Accessed October 26, 2021. https://stackoverflow.com/q/
26579392.

Unpingco, José. 2021. Python Programming for Data Analysis. Cham:
Springer.

W3Schools. 2021. “Python String rsplit() Method.” Accessed October 26,
2021. https://www.w3schools.com/python/ref_string_rsplit.asp.

Алексић, Данило, and Бранислава Шандрих. 2021. “Аутоматска
ексцерпциjа парова речи за учење изговора у настави српског као
страног jезика.” Српски jезик: студиjе српске и словенске 26 (1):
567–584. issn: 0354-9259. https://doi.org/10.18485/sj.2021.26.1.32.
http://doi.fil.bg.ac.rs/pdf/journals/sj/2021-1/sj-2021-26-1-32.pdf.

Ивић, Павле. 1961–1962. “Броj прозодиjских могућности у речи
као карактеристика фонолошких система словенских jезика.”
Jужнословенски филолог 25: 75–113.

Infotheca Vol. 22, No. 1, June 2022 31

https://pypi.org/project/minpair
https://pypi.org/project/minpair
https://www.python.org
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://stackoverflow.com/q/26157361
https://stackoverflow.com/q/519633
https://stackoverflow.com/q/26579392
https://stackoverflow.com/q/26579392
https://www.w3schools.com/python/ref_string_rsplit.asp
https://doi.org/10.18485/sj.2021.26.1.32
http://doi.fil.bg.ac.rs/pdf/journals/sj/2021-1/sj-2021-26-1-32.pdf

