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 Abstract: The research aims at investigating the impact of 

indirect expenses (overheads) variation on time-cost 

optimisation (TCO) of building infrastructure projects. The 

study’s main objectives are to propose a practical methodology 

for time-cost planning of buildings and to analyse the 

relationship between level of overheads and minimum project 

duration with respect to contractor’s profitability. The 

methodology entails the development of a TCO linear 

programming (LP) model founded on PERT/CPM network 

analysis, and its subsequent implementation to an actual public 

building project - a three-storey nursery school for a 

municipality - for the assessment of minimum project duration 

for a given gross profit when altering the fixed amount of 

overheads. The LP mathematical model is solved with Solver 

optimisation add-in for Microsoft Excel©. Useful prototype 

minimum project duration vs. project overheads trade-off 

curves are derived to support project management decisions. 

The proposed TCO approach may serve as a valuable 

scheduling tool, providing stakeholders important insight into 

the relationship between level of project overheads, profit and 

duration. The study is expected to assist both construction 

researchers and practitioners towards more effective decision-

making in the planning process of building projects. 

 

Keywords: Construction, optimisation, overheads, 

scheduling. 

 

1. INTRODUCTION 

Construction planning decision-making is 

mainly focused on the establishment of the 

optimal trade-off between duration and cost of a 

project prior to its site execution. This time-cost 

relationship is a function of the technological 

order of the various activities of a project, the 

resources required and the associated costs. The 

optimisation of this relationship can be a quite 

complex and challenging task (Cusack, 1985). 

Previous experience is mainly used to estimate 

project duration and cost. Typically, the 

construction project is broken down into work 

activities to which several resources can be 

assigned so that durations and costs estimated. 

The activities are linked together according to 

their precedence relationships to form a project 

network. Scheduling techniques are then used to 

analyse the network to identify critical path(s) 

and project duration and cost (Burns et al., 

1996). Difficulties arise because, for the 

hundreds of activities in a project, there are 

various options of completing these activities 

using different crew sizes or equipment. This 

creates the classic combinatorial search problem 

for construction engineers to identify the best 

selections of resources that produce the 

minimum total cost possible to complete the 

project. Because of the time-cost relationship 
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among activities, it usually takes several 

iterations to select the proper methods, 

equipment, crew sizes and working hours to 

obtain an acceptable overall project duration 

within the contractual time limit (Feng et al., 

2000).  

 

In public works, penalties are commonly 

imposed on contractors that exceed contract 

project duration; failure to meet the contractual 

time requirement will put contractors in breach 

of contract and thus liable for any damages 

suffered by the owner due to late project 

completion. Furthermore, on a job in progress, 

the owner may desire an earlier completion date 

than originally called for by the contract and 

may request that the contractor quote a price for 

expediting the work. On the other hand, the 

contractor may wish to complete the project by 

a certain date to avoid adverse weather, to free 

human resources and equipment for other work 

and/or to receive an early completion bonus 

from the client (Sears et al., 2015). The 

construction planner then normally aims at three 

possible schedule objectives: minimizing the 

project makespan subject to a fixed upper bound 

of money (the budget restriction); minimizing 

the total cost of the project subject to a given 

bound on the project duration (the deadline 

restriction) (Brucker et al., 1999); or combining 

the two objectives by generating an efficient 

time-cost profile over a set of feasible durations 

(the complete horizon objective) (Vanhoucke, 

2013).  

 

Reducing project time is accomplished by 

compressing the duration of some of its 

constituent critical activities by increasing the 

direct costs of resources required. However, by 

saving project time, there will also be savings in 

the indirect general expenses (overheads). Thus, 

balancing increasing direct costs and decreasing 

indirect costs is the subject of time-cost 

optimisation (TCO) analysis. Increasing the 

resources allocated for the activity reduces the 

duration of the activity, but a point is reached 

where the use of additional resources does not 

result in any overall savings on the project 

(Baldwin, & Bordoli, 2014). This point 

representing the optimum total project cost is 

shown in Figure 1.  

 

 
Figure 1: Optimum TCO point in time-cost 

relationship (Source: Baldwin, & Bordoli, 

2014) 

 

TCO has been studied extensively since the 

development of the critical path method (CPM) 

(Vanhoucke, & Debels, 2007). According to 

Sonmez and Bettemir (2012), these studies can 

be classified in the following three categories: 

mathematical models, seeking for exact 

solutions; heuristic procedures, resulting in 

near-optimal solutions; and meta-heuristic 

algorithms, in search for optimal or near-

optimal results. Mathematical methods can 

convert problems of TCO to mathematical 

modelling through linear programming (LP), 

integer programming (IP), or dynamic 

programming (DP) to exactly solve the 

problem (e.g., Burns et al., 1996; Chassiakos, 

& Sakellaropoulos, 2005; De et al., 1995; 

Moussourakis, & Haksever, 2004). In the early 

1960s, Kelley (1961) and Fulkerson (1961) 

formulated models using LP and network flow 

computations by assuming bounded, piecewise 

linear, continuous, convex, non-increasing 

time-cost relationships. Meyer and Shaffer 

(1963) used IP to handle more complex time-

cost functions. The practicality of the 

aforementioned approaches was questioned by 

Cusack (1985) due to the large number of 

variables and constraints needed and the 

necessity for time consuming mathematical 

analysis to transform project data into standard 

IP form. Cusack (1985) suggested an IP model 

based on convex time-cost curves joined by 

points of breakthrough, thus reducing the 

number of variables and constraints so that the 

analysis could be automated using a 

microprocessor. However, the proposed model 

was limited to a maximum number of hundred 

work activities. Robinson (1975) developed a 
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DP approach to solve TCO problems which 

require special network relationships. Reda and 

Carr (1989) used mixed IP to solve a TCO 

problem within related activities. Maghrebi et 

al. (2013) proposed a novel mathematical 

deterministic model based on path constraints, 

rather than activities. The simplicity of the 

model and the shorter time required for the 

solution are its main strengths. Generally, the 

advantages of mathematical models include 

efficiency and accuracy. However, constraints 

and objective function formulation can be 

time-consuming and error prone. Besides, 

mathematical programming knowledge is 

necessary for correct formulation of the model 

and few construction planners are trained to 

perform this type of formulation, especially for 

large networks (Williams, 2003). Concise 

reviews of mathematical programming 

attempts can be found in Brucker et al. (1999); 

Ahuja and Thiruvengadam (2004); and 

Moselhi and Roofigari-Esfahan (2013). 

Heuristics require less computational effort 

than mathematical methods. Early examples of 

heuristic approaches can be found in the work 

of Fondahl (1961); Prager (1963); Siemens 

(1971); and Goyal (1975). Moselhi (1993) 

developed an algorithm based on schedule 

compression. Generally, heuristic methods 

provide a fast way to obtain near-optimal 

solutions with a reasonable amount of 

computational effort but do not guarantee 

optimality. In addition, solutions offered by 

heuristic methods do not provide the range of 

possible solutions, making it difficult to 

experiment with different scenarios for what-if 

analysis (Burns et al., 1996). Subsequently, 

several meta-heuristic approaches searching 

for optimal or near-optimal solutions have been 

developed: genetic algorithms (GA) (El-

Rayes, & Kandil, 2005; Eshtehardian et al., 

2009; Feng et al., 1997; Hegazy, 1999; Li, & 

Love, 1997; Sonmez, & Bettemir, 2012), 

neural networks (NN) (Adeli, & Karim, 1997), 

particle swarm optimisation (PSO) (Elbeltagi 

et al., 2005; Yang et al., 2007), and ant colony 

optimisation (ACO) (Kalhor et al., 2011; Ng, 

& Zhang, 2008). A recent state of art review on 

meta-heuristic TCO approaches is provided by 

Albayrak and Özdemir (2017). Yang (2005) 

stated that the time-cost relationship of each 

activity can be piecewise linear (Cusack, 1985; 

Fondahl, 1961; Kelley, 1961), convex (Foldes, 

& Sourmis, 1993), concave (Falk, & Horowitz, 

1972), quadratic (Deckro et al., 1995), and 

discrete (De et al., 1995; Liu et al., 1995; 

Skutella, 1998). The proposed in this paper 

mathematical project time-cost optimisation 

model approximates both direct and indirect 

costs as linear functions of time, like in the 

original CPM (Kelley, & Walker, 1959; 

Lockyer, 1974). This linear relationship 

between direct cost and duration can be seen in 

Figure 2. 

 

 
Figure 2: Linear relationship between activity 

direct cost and duration (Source: Sears et al., 

2015) 

 

The effective management of overhead costs 

has been suggested as the main tool to improve 

a construction enterprise’s financial situation 

(Enshassi et al., 2008). Nonetheless, contractors 

often overlook the importance of indirect 

expenses estimation due to its low percentage 

contribution to the contract sum (Chan, & 

Pasquire, 2002). Moreover, planning the 

optimal project completion is a major 

construction management aspect for building 

constructors towards maximising their profit 

margins and succeeding client’s satisfaction 

through the expedient delivery of the final 

product for building owners to start reaping the 

anticipated benefits (Elazouni et al., 2015). 

Notwithstanding the significance of both 

indirect expenses’ management and TCO on 

project success, to the author’s knowledge, there 

is no research exploring the effect of indirect 

costs’ variation on TCO and the resulting 

project profitability. A few studies have 

concentrated on assessing the effect of budget 

(funding) uncertainty on TCO (e.g., El-Kholy, 

2013; Yang, 2005). In addition, the foregone 

literature review on the currently available 

crashing solutions suggests that a practical 

knowledge gap remains in the adoption of a 

widely accepted by the construction sector 

whilst simple and easy-to-use TCO 
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methodology for the effective time-cost 

planning of construction projects. 

 

The paper, thus, aims at assessing the impact of 

indirect disbursements (overheads) variation in 

project crashing of building infrastructure 

projects. The main objectives of the study are: i) 

to propose a simple and practical methodology 

for solving the TCO problem in construction 

projects; and ii). to analyse the relationship 

between the level of project indirect costs and 

minimum (crash) project duration for fixed 

percentages of contractor’s profit. The research 

methodology consists of: i). developing a TCO 

LP spreadsheet model founded on the 

PERT/CPM activity-on-node (AoN) network 

analysis; ii). implementing the above LP model 

to a real public building infrastructure project - 

a three-storey nursery school for a municipality 

- in order to calculate minimum project duration 

when changing the amount of indirect expenses 

(sensitivity analysis); and iii). using the results 

from the analyses to assist project stakeholders 

towards more effective decision-making in 

infrastructure project planning.  

 

2. DISBURSEMENTS IN 

INFRASTRUCTURE PROJECTS  

 

In construction projects, the two main cost 

categories are direct and indirect expenses. 

Direct cost is defined as the cost of labour used, 

embedded materials and installed equipment, 

directly involved in the physical construction of 

the building infrastructure (CIOB, 2015). 

Therefore, direct expenses for public works 

contractors typically include: labour, 

particularly hourly workers, for whom a labour 

expense can be directly linked to a particular 

work item; materials, such as concrete, rebar, 

bricks, lumber, paint, drywall, carpet and 

structural steel; installations, such as elevators, 

air-conditioning units and sanitary fixtures; 

heavy equipment, mainly construction site 

machinery (bulldozers, excavators, cranes and 

concrete pumps); subcontractors, even though 

subcontractors’ charges comprise labour, 

materials, equipment, overheads, and possibly 

sub-subcontractors, general contractors treat 

these charges as a direct cost; and other 

miscellaneous costs, such as fees for issuing 

town planning permits or expenses for lawyers 

and special consultants hired for specific tasks 

in projects (Mubarak, 2015). Indirect cost (or 

overhead expenses) is defined as all costs which 

do not become a final part of the building 

infrastructure, but which are necessary for the 

completion of the facility; these costs may 

include (but are not limited to) field 

administration, direct supervision, capital tools, 

start-up costs, contractor’s fees, insurance, 

taxes, etc. (Westney, 1997). Hence, contractors’ 

indirect costs include: project (site field) 

overheads (or job overheads), such as project 

staff (project manager, project superintendent, 

project engineer, receptionist or secretary, 

clerk), office containers and other temporary 

structures, cars and trucks assigned to the 

project team, office light equipment (copying 

machine, fax machine, computers), temporary 

utilities (electricity, water, drinking water/ice, 

telephones, cell phones, gas, portable toilets); 

other indirect project-related expenses, such as 

power generators and projectors used to provide 

light during night working hours; general (head-

office) overheads, such as main office expenses 

(rent, lease, maintenance, utilities), head office 

personnel, equipment, vehicles and services, 

such as lawyers and accountants (not working 

exclusively for a specific project), other main 

office expenses, such as advertising and charity 

contributions; profit which is estimated as a 

percentage by the contractor before taking on 

the project, it usually ranges between 5% and 

10% (although it may occur outside this range) 

and depends on many project-specific factors, 

prevailing economic conditions and contractors’ 

financial status (the term “profit” is essentially 

the contractor’s “return for taking risk”, i.e. the 

amount that is usually charged in proportion to 

the risk taken in undertaking a project); 

contingency fees, an additional sum of money or 

percentage allocated for unknown events most 

likely to occur during construction (directly 

proportional to the above risk) (Mubarak, 2015). 

 

The conventional method of construction 

project cost estimation is still based on 

determining the direct (variable) costs (for 

materials, labour, plant, and subcontractors) and 

then adding on top a cost-plus percentage to 

arrive at the proposed price. This added gross 

margin is expected to cover total indirect (fixed) 

expenses (overheads) plus contingency and 

what remains is gross profit (BCIS, 2012). A 

difficulty can arise regarding the means by 
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which overheads are allocated and absorbed. 

Since estimators often misallocate overhead 

project costs, a project might look like 

promising a large gross margin, when in fact it 

does not, and another project might look like 

having a small gross margin, when in fact it has 

a larger one (Raz, & Elnathan, 1999). Therefore, 

construction firms are constantly faced with the 

dilemma of having to adjust the level of their 

overheads. In recession periods when 

predetermined volume targets are not reached, 

whether due to low business activity or because 

of unsuccessful bidding, builders may face 

severe financial difficulties, even insolvency, 

unless they reduce their overheads usually by 

means of redundancies, disposal of facilities or 

assets, discontinuation of services, and non-

maintenance of records and databases. 

However, these measures may cause a negative 

effect on a company’s ability to compete and, 

when a market recovery occurs, contractors with 

reduced overheads may find themselves at a 

disadvantage from both capacity and 

competitive points of view (Eksteen, & 

Rosenberg, 2002). Therefore, accurate 

estimation of project overheads not only assists 

in improving the chance of success in bidding, 

but also serves as a profit centre for the 

contractor (Chan, & Pasquire, 2002).  

 

In this research, after setting the required fixed 

percentage of contractor’s profit, the proposed 

TCO mathematical model is used to examine 

the relationship between indirect (overhead) 

project cost and minimum (crash) project 

duration.   

 

3. TIME-COST OPTIMISATION MODEL 

DEVELOPMENT 

 

Today’s project scheduling practice uses solely 

AoN networks; the technique is more flexible 

due to its enhanced capabilities in modelling 

projects closer to reality (Hajdu, 2013). In an 

AoN network, work activities are assigned to 

nodes instead of arcs. A project is defined as an 

acyclic and directed graph G = (N, R) with a set 

of interacting activities with required time and 

resources for their completion. The project’s 

structural analysis provides a decomposition of 

activities into a set of nodes N and a set of 

technological precedence relationships R 

between them. Set N consists of n work 

activities i = {1, …, n} to be scheduled plus two 

auxiliary (dummy) activities, 0 and n+1, 

representing project start and finish, 

respectively. The precedence relationships are 

represented as pairs of activities (a, b) where a 

≠ b, denoting that beginning time of activity a 

affects earliest start time of activity b. A 

duration da is assigned to each project activity a 

and a time lag δab to each pair (a, b) ∈ R. The 

temporal constraint then is δab ≤ sb – sa, with sa 

and sb the start times of activities a and b, 

respectively. If (a, b) ∈ R, activity b cannot start 

earlier than δab time units (normally working 

weeks or days) after the start of activity a. If δab 

= da, the above inequality constraint is referred 

to as precedence constraint between activities a 

and b. The AoN network analysis then consists 

of (Oxley, & Poskitt, 1996): (1) calculating the 

earliest finish (EF) times of the activities by a 

forward pass through the network and selecting 

the longest path (i.e. the final earliest 

completion time gives the project duration); (2) 

calculating the latest finish (LF) times of the 

activities by a backward pass through the 

network and selecting the longest path (the final 

latest finish time is the same as its earliest 

completion time and gives the same project 

duration); (3) calculating the total float (TF) of 

the activities which is either latest start times 

minus earliest start times (LS – ES) or latest 

finish times minus earliest finish times (LF – 

EF) (both give the same result); and (4) 

identifying the critical activities, i.e. the ones 

with zero total float, to determine the critical 

path of the project. The complete project 

network definition is as follows:  

 

G an acyclic and directed graph, where G = 

(N, R) 

N  set of nodes in project network, each node 

representing a work activity 

R set of arcs in the project network, 

representing the immediate precedence 

relationships between activities, with 

each activity pair (a, b) ∈ R with a ≠ b, 

denoting that starting time of activity a 

affects earliest start time of activity b 

i  activity to be scheduled, where i = {0, 1, 

…, n, n+1} ∈ N, with 0 and n+1 being the 

two auxiliary (dummy) activities 

representing project start and finish, 

respectively 

di  normal duration assigned to each activity 

i (di ≥ 0) 
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ci crash duration assigned to each activity i 

(0 ≤ ci ≤ di) 

ri 
max

 maximum time reduction in duration of 

activity i, where: 

 

               ri
max = di – ci           (1)    

                                                                                                                                                               

ri time reduction in duration of activity i 

when crashing the project (0 ≤ ri ≤ ri
max) 

si start time of activity i when crashing the 

project (si ≥ 0) 

ei end time of activity i when crashing the 

project, where: 

 

             ei = si + di – ci            (2)   

                                                                                                                                                                

ESi earliest start time of activity i  

EFi earliest finish time of activity i 

LSi latest start time of activity i 

LFi latest finish time of activity i 

TFi total float (or slack) of activity i where: 

 

TFi = LFi – EFi = LSi – ESi   (3) 

                                                                                                                                   

δ time lag to each arc (a, b) ∈ R, where:  

 

                δab + sa ≤ sb            (4)      

                                                                                                                                                                 

being the temporal constraint with sa and sb the 

start times of activities a and b; if (a, b) ∈ R, 

activity a cannot start earlier than δab time units 

after the start of activity a; if δab = da, constraint 

(4) is referred to as the immediate precedence 

constraint between activities a and b assuming 

finish-to-start relationship without leads or lags 

(FS = 0)  

 

t n project completion time under normal 

conditions (according to traditional CPM 

calculations) 

t max project completion deadline (as specified 

by signed contractual agreement) 

t min crash project completion time (minimum 

possible duration based on selected 

technology) 

t time units of construction production 

period (e.g., working months or weeks or 

days), where: 

t = {0, 1, 2, …, t min, …, t n, …, t max} 

Di
n
 direct cost for normal completion (di) of 

activity i  

Di
t
 direct cost per time unit for normal 

completion (di) of activity i  

Dp
n

 total project direct cost for normal 

completion (t n), where: 

    Dp
n = ∑(Di

n)            (5)      

                                                                                                                                                              

Di
c
 direct cost for crash completion (ci) of 

activity i  

Dp
c
 total project direct cost for crash 

completion (t min), where: 

 

     Dp
c = ∑(Di

c)             (6) 

                                                                                                                                                                  

Ai  additional direct cost for crash 

completion of activity i, where: 

 

    Ai = (Di
c ‒ Di

n)          (7)                                                                                                                                                            

 

bi additional direct cost per time unit saved 

from crashing activity i (crash cost slope), 

where: 

 

bi  = (Di
c‒ Di

n) / (ci ‒ di) = (Ai / ri 
max)  (8)  

                                                                                                                     

Ci
c
 crash cost for activity i, where: 

 

                   Ci
c
 = bi · ri               (9) 

                                                                                                                                                                    

Cp
c
 total project crash cost, where: 

 

          Cp
c
 = ∑(Ci

c) = ∑(bi · ri)     (10)      

                                                                                                                                       

Op
t
 total project indirect expenses (overhead 

cost), where: 

       Op
t = ε · tmin            (11)    

                                                                                                                                                               

with ε being a fixed amount per time unit 

(normally calculated as a % of contract sum) 

 

Cp total project cost, where: 

 

Cp = Dp
n + Cp

c
 + Op

t = ∑(Di
c) + ∑(bi · ri)      

                    + (ε · tmin)            (12)   

                                                                       

Sp contract sum (contractor’s winning bid), 

a fixed amount as signed in contractual 

arrangement 

Pp contractor’s gross profit from project, 

where: 

 

            Pp = Sp – Cp              (13)                                                                                                                                                           

 

According to equation (12), total project cost 

Cp is the sum of total direct cost Dp
n for 

executing all project activities, plus total 
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additional cost for crashing activities Cp
c in 

order to achieve earlier project completion, 

plus total indirect (overhead) cost Op
t 

corresponding to the crash (minimum) project 

duration tmin. Contractor’s gross profit Pp from 

project’s execution is derived from equation 

(13) as the difference between fixed contract 

sum Sp and total project cost Cp. Therefore, 

minimising total project cost Cp results in 

maximising contractor’s gross profit Pp. The 

research aims at examining the relationship 

between minimum project duration tmin, 

overhead cost Op
t and gross profit Pp. The latter 

is assumed to be greater than a minimum 

required level as set by the contracting 

organisation (as a percentage of contract sum): 
 

Pp
min minimum contractor’s gross profit 

anticipated from project, where: 
 

      Pp
min = φ· Sp             (14)                                                                                                                                       

 

with φ being a % of contract sum. 
 

Thus, the linear programming (LP) 

mathematical model for solving the TCO 

problem is formulated as follows:  

Objective function: 
 

to minimize z, where:    
 

                       z = en+1                (15)  

(end time of dummy project finish activity)    
 

Subject to constraints: 
 

                             ri ≤ ri
max   (16)  

(maximum reduction in activity duration)  

                                                              

                                 ri ≥ 0    (17)  

(non-negativity for reduction in activity 

duration) 
 

                                      si ≥ 0        (18)  

(non-negativity for activity start times) 
 

                                       t ≥ 0       (19)       

         (non-negativity for project duration)                                                              

                             t ≤ t max          (20) 

(maximum project duration constraint)                                                       

                         si+1 ≥ si + di – ri     (21)  

(general start time precedence constraint)  

      

             t ≥ sn+1 + dn+1 – rn+1      (22) 

       (project duration constraint)                                                                                    

                                Cp ≤ Sp   (23)  

(maximum total project cost constraint)                                                            

                        Pp ≥ Pp
min            (24) 

(minimum contractor’s gross profit constraint)                                                    

 

The LP model (objective function 15 subject to 

constraints 16-24) can be easily implemented in 

a spreadsheet with a built-in optimisation tool 

(solver), e.g., Microsoft Excel© with Solver add-

in, which is the software used in this research. 

Therefore, the LP can be solved several times 

for different levels of project indirect cost to 

calculate minimum project duration for a given 

percentage of contractor’s profit. From the 

analysis, a trade-off curve for minimum project 

duration vs. level of overhead cost is derived, 

which can be used to assist management in 

project planning and control. A further useful 

analysis could be to investigate changes in the 

above relationship of crash duration and 

overheads by altering the level of anticipated 

profit from the project.   
 

4. MODEL IMPLEMENTATION: 

CONSTRUCTION OF A NEW PUBLIC 

NURSERY SCHOOL 
 

The proposed methodology is used to schedule 

the construction of an actual new three-storey 

reinforced concrete-framed public nursery 

building infrastructure project with a total gross 

floor area of approx. 910 sq.m. The building is 

expected to cover the educational needs of a 

municipality within the greater area of Northern 

Attica, Greece. The total contract sum Sp for the 

project is €1.200.000 (contractor’s winning bid) 

and the associated contract duration (project 

deadline) tmax, from the date of contractor’s 

setup on site to the date of commissioning the 

project to the client, is 82 weeks. 
 

The approved construction execution program 

(in the form of a Gantt chart) was carefully 

examined so that the PERT/CPM AoN project 

network was developed, assuming a finish-to-

start immediate (FS=0) precedence relationship. 

The definition of work activities, the 

establishment of their technological precedence 

interrelationships, and their estimated normal 

(most likely) and crash (accelerated) times 

(durations di and ci) in weeks together with the 

corresponding estimated normal (most likely) 

and crash (increased) direct costs (Di
n and Di

c) 

in € are shown in Table 1.
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Table 1: Work activities with expected normal/crash duration and direct cost (author’s own work) 

Activity 

(i = 0, 1, …, n, n+1) 

Activity 

no. 

Immediate    

Predecessors 

Normal 

Time 

(di) 

Crash 

Time 

(ci) 

 

Normal 

Direct 

Cost 

(Di
n) 

 

 

Crash 

Direct 

Cost 

(Di
c) 

 

Project Start (Dummy) 0  0 0 0 0 

Site Setup/Demolitions 1 0 3 2 8200 13120 

Excavations 2 1 4 3 18500 29600 

RC Structural Frame 3 2 14 10 145800 233280 

Brickwork 4 3 8 6 16100 25760 

Metal Casing Pseudoframes 5 4 2 1 2300 3680 

Electrical 1st Fix (conduits) 6 4 3 2 31900 51040 

Plumbing (piping) 7 4 4 3 42500 68000 

Marble Sills 8 4 2 1 2000 3200 

Waterproofing/Roofs 9 3 4 3 13700 21920 

Plastering 10 5; 6; 7; 8; 9 9 6 16700 26720 

Steelworks/Railings 11 10 2 1 12000 19200 

Electrical 2nd Fix (wiring) 12 10 3 2 20100 32160 

Walls Tiling 13 11 2 1 4600 7360 

Heating/Cooling/Gas/Solar (ducts) 14 12 3 2 17200 27520 

Floorings (marble, wooden, tiles) 15 11; 13; 14 6 4 13400 21440 

Doors/Windows 16 15 5 3 39200 62720 

Joinery 17 15 3 2 10400 16640 

Bathrooms/WC Fixtures 18 15 2 1 3500 5600 

Boiler/Panels/Fan-coils Installation 19 15 4 1 43200 69120 

Elevator 20 12; 14 2 1 12000 19200 

Plasterboard Ceilings 21 19; 20 2 1 7700 12320 

Colourings 22 21 10 7 18900 30240 

Lighting/Electrical Finishing/Minor Works 23 16; 17; 18 3 2 17600 28160 

Surrounding Area Works 24 22; 23 6 4 24700 39520 

Operational Testing/Clean-up/Handover 25 24 3 2 3300 5280 

Project Finish (Dummy) 26 25 0 0 0 0 

 

Using most likely durations and costs, the 

following PERT/CPM AoN network is 

constructed to identify the critical path and to 

estimate normal total figures for duration and 

direct cost over the whole project (Figure 3). 

The critical path is the longest path from start to 

finish and determines the overall project 

duration. Thus, the estimated total duration tn of 

the project is 79 weeks, three weeks earlier than 

contract deadline tmax (82 weeks). Total direct 

cost estimate Dp
n is therefore €545.500 (the sum 

of normal direct cost Di
n for each activity from 

Table 1).
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Figure 3: PERT/CPM AoN network graph assuming normal durations (author’s own work) 

 

Critical activities are represented by shaded 

boxes in Figure 3; the critical path is defined by 

their connecting (thicker) lines (S-1-2-3-4-7-10-

12-14-15-19-21-22-24-25-F). Critical activities 

are those with zero total float (TF) or slack. If 

work on this longest path is delayed, then, the 

entire project will be delayed. For this reason, 

the subset of critical activities must be kept on 

schedule to avoid time overruns.  

 

The next step involves the repetitive solution of 

the LP, as previously developed in the third 

section of the paper, for a fixed percentage of 

expected profit (φ = 10%) and different amounts 

ε of overheads per week, to obtain the resulting 

minimum (crash) project duration tmin and the 

associated total cost for crashing critical 

activities Cp
c. For an anticipated gross profit 

level not less than 10%, the minimum possible 

project duration ranges from 64 weeks to 53 

weeks. The total additional crash cost Cp
c for 

project compression is presented in Table 2. 

Table 2 also includes: total indirect expenses 

Op
t, total direct cost Dp

n for normal completion, 

total gross profit Pp, and total project cost Cp, for 

each project completion time. Total crash cost 

ranges from €63.548 for the duration of 64 

weeks, to €225.340 for the duration of 53 weeks. 

Total overhead cost ranges from €470.952 (or 

else 39,2% of contract sum Sp) to €309.160 (or 

else 25,8% of contract sum Sp) for project 

duration from 64 weeks to 53 weeks, 

respectively. Table 3 shows which activities 

need to be compressed with their corresponding 

time reduction in weeks, for each possible crash 

project duration. All critical activities should be 

crashed to reduce project duration to 53 weeks.

 

Table 2: Synopsis of results from TCO model application for φ = 10% (author’s own work) 

tmin ε  Op
t % Sp Cp

c % Sp 
Dp

n % Sp Pp % Sp Cp % Sp 

64 7330 470952 39,2% 63548 5,3% 545500 45,5% 120000 10,0% 1080000 90,0% 

63 7310 460915 38,4% 73585 6,1% 545500 45,5% 120000 10,0% 1080000 90,0% 

62 7290 452844 37,7% 81656 6,8% 545500 45,5% 120000 10,0% 1080000 90,0% 

61 7270 445009 37,0% 89491 7,5% 545500 45,5% 120000 10,0% 1080000 90,0% 

60 7230 435999 36,3% 98501 8,2% 545500 45,5% 120000 10,0% 1080000 90,0% 

59 7180 427027 35,5% 107473 9,0% 545500 45,5% 120000 10,0% 1080000 90,0% 

58 7100 414806 34,5% 119694 10,0% 545500 45,5% 120000 10,0% 1080000 90,0% 

57 6930 398340 33,2% 136160 11,3% 545500 45,5% 120000 10,0% 1080000 90,0% 

56 6670 376837 31,4% 157663 13,1% 545500 45,5% 120000 10,0% 1080000 90,0% 

55 6390 354488 29,5% 180012 15,0% 545500 45,5% 120000 10,0% 1080000 90,0% 

54 6110 332933 27,7% 201567 16,8% 545500 45,5% 120000 10,0% 1080000 90,0% 

53 5780 309160 25,7% 225340 18,8% 545500 45,5% 120000 10,0% 1080000 90,0% 
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Table 3: Crashed activities with time reduction for each project duration (author’s own work) 

tmin Crashed Activities(Time Reduction in weeks) 

64 1(1) 4(2) 10(3) 15(2) 21(1) 22(3) 24(2) 25(1) - - - - - - 

63 1(1) 4(2) 10(3) 15(2) 19(1) 21(1) 22(3) 24(2) 25(1) - - - - - 

62 1(1) 4(2) 10(3) 15(2) 19(2) 21(1) 22(3) 24(2) 25(1) - - - - - 

61 1(1) 4(2) 10(3) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - - - - - 

60 1(1) 4(2) 10(3) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - - - - 

59 1(1) 2(1) 4(2) 10(3) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - - - 

58 1(1) 2(1) 4(2) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - - 

57 1(1) 2(1) 3(1) 4(2) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - 

56 1(1) 2(1) 3(2) 4(2) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - 

55 1(1) 2(1) 3(3) 4(2) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - 

54 1(1) 2(1) 3(4) 4(2) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) - 

53 1(1) 2(1) 3(4) 4(2) 7(1) 10(3) 12(1) 14(1) 15(2) 19(3) 21(1) 22(3) 24(2) 25(1) 

 

 
 

Figure 4: Trade-off curve for crash project duration vs. level of overheads (author’s own work) 

 

Figure 4 depicts the trade-off curve that 

describes the relationship between level of 

overheads and crash project duration, for the 

given contractor’s profit percentage of 10%.

 

 
 

Figure 5: Trade-off curve for crash project duration vs. crash project cost (author’s own work) 
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Figure 5 shows the trade-off relationship 

between crash project duration and total crash 

cost, for the fixed 10% profit percentage. The 

above trade-off curves in Figures 4 and 5 can be 

of great value to project stakeholders when 

scheduling the building construction production 

phase by examining different possible time-cost 

optimisation scenarios. 

 

Another useful analysis involves the 

investigation of changes in the above trade-off 

relationship between crash project duration and 

level of project overheads by altering the level 

of anticipated contractor’s profit. If a rise in the 

profit margin from the project (say by 2,5%) has 

been requested by contractor’s board of 

directors, the LP model can be easily adjusted to 

calculate all relevant variables for the suggested 

new profit percentage φ = 12,5%. The results 

from the TCO analysis are summarised in Table 

4 and the new crash duration-level of overheads 

trade-off curve is illustrated in Figure 6. Finally, 

the effect on TCO of potential bonuses for early 

completion from the client to the contractor that 

can also be assessed by properly adjusting the 

herein proposed LP model, may be considered 

as an extension of this research work.

  

Table 4: Synopsis of results from TCO model application for φ = 12,5% (author’s own work) 

tmin ε  Op
t % Sp Cp

c % Sp 
Dp

n % Sp Pp % Sp Cp % Sp 

65 6870 447059 37,2% 57441 4,8% 545500 45,5% 150000 12,5% 1050000 87,5% 

64 6860 438809 36,5% 65691 5,5% 545500 45,5% 150000 12,5% 1050000 87,5% 

63 6840 432668 36,0% 71832 6,0% 545500 45,5% 150000 12,5% 1050000 87,5% 

62 6810 423709 35,3% 80791 6,7% 545500 45,5% 150000 12,5% 1050000 87,5% 

61 6780 415038 34,6% 89462 7,4% 545500 45,5% 150000 12,5% 1050000 87,5% 

60 6740 407299 33,9% 97201 8,1% 545500 45,5% 150000 12,5% 1050000 87,5% 

59 6670 396195 33,0% 108305 9,0% 545500 45,5% 150000 12,5% 1050000 87,5% 

58 6590 385256 32,1% 119244 9,9% 545500 45,5% 150000 12,5% 1050000 87,5% 

57 6410 368496 30,7% 136004 11,3% 545500 45,5% 150000 12,5% 1050000 87,5% 

56 6130 346131 28,8% 158369 13,2% 545500 45,5% 150000 12,5% 1050000 87,5% 

55 5850 324547 27,0% 179953 15,0% 545500 45,5% 150000 12,5% 1050000 87,5% 

54 5560 302974 25,2% 201526 16,8% 545500 45,5% 150000 12,5% 1050000 87,5% 

53 5220 279219 23,2% 225281 18,8% 545500 45,5% 150000 12,5% 1050000 87,5% 

 

 

Figure 6: New trade-off curve for crash project duration vs. level of overheads (author’s own 

work) 

 

5. CONCLUSION 

 

Effective planning of building infrastructure is 

crucial to their successful delivery by public 

works contractors to clients and to the society at 

large. The optimal project duration for the 

construction production of a building 

infrastructure is a function of the technological 

order of the execution modes of its various 

activities, the human and mechanical resources 

y = -1,0431x3 + 4,2782x2 - 8,4449x + 6864,1
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required and the related direct and indirect 

expenses. Hence, effective scheduling of 

building projects is heavily dependent upon 

planning decisions on their time and cost targets. 

Project duration and expenses can only be 

“compressed” to certain time and cost figures 

and ideally to an optimum level; the solution to 

this so-called TCO problem is a demanding task 

faced by decision-makers in construction. 

However, despite the availability of numerous 

project management techniques and 

sophisticated software applications, the built 

environment is notorious for delivering products 

later than deadlines and over budget. One of the 

reasons, as suggested by current literature, is the 

ineffective management of general overheads. 

Therefore, it is advantageous for all project 

stakeholders to have a prior knowledge of 

overall time-cost profiles and understand the 

impact of potential changes in (fixed) indirect 

expenses on project success. The contribution of 

the herein presented LP spreadsheet model 

stems from its capability to facilitate sensitivity 

analysis, where the analyst can alter the inputs 

and conditions for the proposed project in a 

number of “what-if” analyses to facilitate 

project TCO decision-making. In addition, once 

the time-cost project baseline profile has been 

established and approved by the owner, a 

continuous comparison is possible of the actual 

performance with that planned, highlighting any 

deviations from the plan so that actions can be 

taken, either to bring things “back on track” or 

to modify the plan. The proposed approach may 

serve as a valuable tool for infrastructure 

scheduling by providing project stakeholders 

important insight into the relationship between 

level of overheads and total duration and cost of 

the project. From the analysis results, useful 

prototype trade-off curves are derived to support 

project management decisions.  

 

The herein presented study is expected to assist 

both researchers and practitioners operating 

within the construction industry towards more 

effective decision-making in planning building 

projects. The optimisation of the construction 

project time-cost relationship can be of great 

significance to clients in highlighting the effect 

of “crashing” the work for early project 

completion on the maximisation of capital 

investment (notwithstanding the fact that total 

direct cost is increased). Nonetheless, it should 

be emphasized that the main difficulty with 

achieving an acceptable reliability level when 

applying TCO techniques lies in the accuracy 

and reliability of data related to additional 

(crash) costs for speeding-up the critical work 

activities. Hence, an immediate necessity arises 

for construction managers to collect accurate 

and relevant resource consumption data from 

historical projects if results are to be used as a 

sound basis for decision-making.  
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