
Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

Type of paper: Original scientific paper
Received: 10.06.2023.
Accepted: 04.07.2023.
DOI: h�ps://doi.org/10.18485/edtech.2023.3.1.5
UDC: 004.421:795

Pathfinding Algorithms in Games
Marko Novaković*
*Information Technology School – ITS, Belgrade, Serbia; marko45521@its.edu.rs

Abstract: This article describes the A*, Dijkstra's, and genetic pathfinding algorithms used in games, providing a
comparison and information about them. While these are not the only algorithms used in game pathfinding, they are
currently the most commonly used ones. As games increasingly demand the presentation of more data (higher-quality
graphics, complex environmental communication systems, be�er sound effects, advanced character movement sets,
smarter AI, etc.) in shorter time frames, algorithms must be developed to become more optimal. In the near future,
they will be replaced by improved versions or entirely new algorithms.

Keywords: ant colony optimization, AI, A* algorithm, breadth-first search, Dijkstra's algorithm, game character, graph,
genetic algorithm, level, pathfinding, ant colony optimization.

I. INTRODUCTION

Games characters often need to move around at certain levels. Sometimes these movements are predetermined
by developers, such as a guard patrolling a specific path or a small enclosed area where a dog can move randomly.
Fixed paths are easy to implement, but errors can easily occur if an object ends up on the path. Characters that move
randomly may appear as having no aim and can easily get stuck.

More complex characters do not know in advance where they will move. Units in real-time strategy games
may receive orders from players to go to a specific point on the map at any given time. In games where stealth is
important, a patrolling guard may need to go to the nearest alarm location and call for backup. Enemies in platform
games may need to chase the player across gaps using available platforms.

For each of these characters, Artificial Intelligence (AI) must be able
to calculate a suitable path through the game level to reach the goal from
their current location. We want the path to be reasonable, as short as
possible, and for the character to move fast (it wouldn't look smart if a
character walked from the kitchen to the living room through the a�ic).

This is called pathfinding, sometimes referred to as path planning,
and it is essential in AI of games. In the example of the AI game model
shown in Figure 1, pathfinding lies at the boundary between
decision-making and movement. It is often used only to determine how to
move towards the goal, while the goal itself is determined by other AI
components, and the pathfinder only calculates the path. To achieve this, it
can be integrated into the movement control system so that it is called only
when it is necessary to plan a path. However, the pathfinding AI can also
be used to determine both the goal and the path.

The majority of games use a pathfinding solution called the A* algorithm (A-star). While efficient and easy to
implement, A* cannot directly operate with game-level data. It requires the game level to be represented in a specific
data structure: a directed, weighted graph. [1] Figure 1: AI game model [1]

II. DIJKSTRA'S ALGORITHM

Given a graph and a starting node, determine the shortest path from the starting node to all other nodes in the
graph.

We generate a shortest path tree, taking the starting node as the root. We have two sets of data: the first set
contains the nodes included in the shortest path tree, and the second set contains the nodes that have not yet been
included. In each iteration of the algorithm, we find the node in the set that has not been included in the shortest path
and has the smallest distance from the source.

Detailed steps of the algorithm:

1.Create a set called sptSet (shortest path tree set) to keep track of the nodes included in the shortest
path – those whose shortest distance from the source has been calculated and confirmed. Initially, this set is
empty.

51

mailto:marko45521@its.edu.rs


Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

2.Assign distance values to all nodes in the graph. Initialize all distances to infinity. Assign a distance of
0 to the starting node so that it is selected first.

3.While sptSet does not contain all nodes:

3.1. Select the node that is not in sptSet and has the smallest distance from the last node.

3.2. Include it in sptSet.

3.3. Update the distances of all nodes that are adjacent to node u (the last node). To update the
distances, go through all the neighboring nodes of node u. For each neighboring node v, if the sum of the
distance from u and the weight (cost factor – the distance in this case) from u to v is less than the distance of
v, then update the distance of v.

Example of a graph "Figure 2" to illustrate the algorithm's operation:

Figure 2: Example of a weighted graph [2]

The set sptSet is initially empty, and the distances assigned to the nodes are {0, INF, INF, INF, INF, INF, INF,
INF}, where INF represents infinity. Now, a node with the minimum distance value is selected. Node 0 is chosen and
included in sptSet. Now, sptSet is {0}. After adding 0 to sptSet, the distances of its neighboring nodes are updated. The
neighboring nodes of 0 are 1 and 7. The distance values of 1 and 7 are updated to 4 and 8, respectively. The following
subgraph shows the nodes with their distance values, only displaying nodes with finite distance values. The nodes
included in the Shortest Path Tree (SPT) are marked in green "Figure 3".

Select the node with the smallest distance that is not already included in the SPT (not in sptSet). Node 1 is
selected and added to sptSet. Now, sptSet looks like: {0, 1}. Update the distance values of the neighboring nodes of
node 1. The distance of node 2 becomes 12 "Figure 4".

Select the node with the smallest distance that is not already included in the SPT (not in sptSet). Node 7 is
chosen. The distance values of nodes 6 and 8 become finite (15 and 9, respectively) "Figure 5".

Figure 3: Subgraph 1 [2] Figure 4: Subgraph 2 [2] Figure 5: Subgraph 3 [2]

Choose the node with the smallest distance that is not already included in the SPT (not in sptSet). Node 6 is
selected. Now, sptSet looks like: {0, 1, 7, 6}. Update the distance values of the neighboring nodes of node 6. The
distances of nodes 5 and 8 are updated "Figure 6".

52



Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

Figure 6: Subgraph 4 [2]

We repeat these steps until all nodes are included in the sptSet. In the end, we obtain the following Shortest
Path Tree (SPT) "Figure 7" [2].

Figure 7: Subgraph 5 [2]

III.A* ALGORITHM

A* (pronounced "A star") is an algorithm commonly used for pathfinding and graph traversal. The algorithm
efficiently finds the path of movement between graph nodes.

On a map with multiple obstacles, finding paths between points A and B can be challenging. For example, a
robot without additional instructions about the direction of movement would continue moving until it encounters an
obstacle ("Figure 8").

However, the A* algorithm introduces heuristics into standard graph search algorithms, essentially planning
ahead at each step to make a more optimal decision. With A*, the robot would search for a path as shown in "Figure 9".

A* is an extension of Dijkstra's algorithm with some characteristics of breadth-first search (BFS) [3].
Similar to Dijkstra's algorithm, A* constructs the shortest path tree from the initial node to the goal node. What

makes A* different and more effective for many searches is its use of a function ƒ(n) for each node, which provides an
estimate of the total cost (length) of the path if that node is used. Therefore, A* is a heuristic function, which means
that the heuristic is more of an estimation rather than a provably accurate value.

A* expands paths that are shorter (cheaper) by using the function:

ƒ(n) = g(n) + h(n)

where:

 ƒ(n) = total estimated cost of the path through node n,

 g(n) = accumulated cost to reach node n,

 h(n) = estimated cost from node n to the goal. This is the heuristic part of the function, making an
assumption.

53



Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

Figure 8: Inefficient way of finding a path [5] Figure 9: Example of using A* for pathfinding [5]

In the grid "Figure 10", the A* algorithm starts from the beginning (red node) and considers all neighboring
nodes. Once the list of neighboring nodes is filled, those that are inaccessible (walls, obstacles, out of bounds) are
filtered out. Then, the node with the lowest cost, determined by ƒ(n), is chosen. This process is recursively repeated
until the shortest path to the goal (blue node) is found. The calculation of ƒ(n) is done heuristically, typically yielding
good results.

Figure 10: Using the A* algorithm [5]

Calculation of h(n) can be done in several ways:

The most common approach is to use the Manha�an distance [4] from node n to the goal. This is a standard
heuristic for grid-based problems.

 If h(n) = 0, A* becomes Dijkstra's algorithm, which guarantees to find the shortest path.

The heuristic function must be admissible, meaning it should never overestimate the cost required to reach the
goal. Both the Manha�an distance and h(n) = 0 are admissible.

Using a good heuristic is important for determining the performance of the A* algorithm. The ideal value of
h(n) would be the exact cost of reaching the goal.

However, this is not possible since the path is unknown. But a method can be chosen that gives reasonably
accurate values, such as when traveling in a straight line without obstacles. This would result in optimal A*
performance.

54



Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

It is desirable to choose an h(n) function that costs less than actually reaching the goal. This allows h(n) to
work accurately. If a higher value is chosen, it would lead to faster but less accurate performance. Therefore, it is often
the case that h(n) is chosen to be less than the actual cost.

Figure 11 illustrates the pseudocode of the A* algorithm wri�en in Python-like syntax [5].

Figure 11: A* Pseudocode [5]

For more details on the A* algorithm, refer to the article [6].

IV.HEURISTIC TECHNIQUES

Heuristic techniques are used to solve problems in a faster and more efficient way by optimizing solution
quality, accuracy, and precision [7]. Heuristic algorithms aim to find a good solution to a specific problem, such as
pathfinding, within a reasonable computation time, but without guaranteed efficiency. "Heuristics" means "to find" in
Greek [8]. Heuristic algorithms include Dijkstra's algorithm and A* algorithm, which were described in the previous
text, as well as the breadth-first search (BFS) algorithm [3].

V. METAHEURISTIC TECHNIQUES

Metaheuristics are essentially high-level strategies that combine lower-level techniques to describe and exploit
the search space. Metaheuristics are a higher level of heuristics and usually exhibit be�er performance than heuristics.
Metaheuristics can reduce search time and provide satisfactory solutions for complex pathfinding problems in video
games. Based on studies, metaheuristic algorithms such as genetic algorithms and ant colony optimization have been
used in games to solve pathfinding problems. Metaheuristics are based on certain natural phenomena, and the most
successful metaheuristic algorithms are inspired by natural systems. For example, ant colony optimization [9] and bee
algorithm were developed based on animal behaviors [10].

VI.GENETIC ALGORITHM

Genetic algorithms are among the most popular evolutionary algorithms in terms of the diversity of their
applications. A wide range of well-known optimization problems have been a�empted to be solved using genetic
algorithms. Furthermore, genetic algorithms are population-based, and many modern evolutionary algorithms are
either based on genetic algorithms or share significant similarities.

The essence of genetic algorithms is encoding the optimization function as a sequence of bits or characters
representing chromosomes, manipulating strings using genetic operators, and selecting suitable individuals with the
aim of finding a good (even optimal) solution to the problem. In the following text, fitness and fitness function will be
used. Fitness refers to the desired characteristics to be obtained through algorithm iterations.

This is usually done through the following procedure:

1.Encoding goals or cost functions.

2.Defining a fitness function or selection criteria.

3.Creating a population of individuals.

4.Performing an evolutionary cycle or iterations by evaluating the fitness of all individuals in the
population, creating a new population through crossover and mutation, suitable reproduction, etc.,
ultimately modifying the old population and iterating using the new population.

5.Decoding the results obtained by the solution.

These steps can be represented schematically as the pseudocode of genetic algorithms ("Figure 12").

55



Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

One iteration of creating a new population is called a generation. In most genetic algorithms, fixed-length
strings are commonly used during each generation, although there is substantial research on variable-length strings
and code structures. In adaptive genetic algorithms, encoding the fitness function often takes the form of binary strings
or arrays with real values. For simplicity, binary strings were used in the discussion. Genetic operators include
crossover, mutation, and selection from the population.

Crossover, denoted as Pc, is the main operator with a high probability, and it is performed by replacing a
segment of one chromosome at a randomly chosen position with the corresponding segment of another chromosome
("Figure 13").

The mutation operator is obtained by randomly changing the value (0 → 1 or 1 → 0) at a randomly selected bit
("Figure 14"). The probability of mutation is denoted as Pm and is often small. Additionally, mutations can occur at
multiple locations, which can be advantageous in practice and application.

Selection of individuals in the population is done by evaluating fitness, and an individual can be included in
the next generation if a certain fitness threshold is reached. Furthermore, selection can be fitness-based, so that the
reproduction of the population is proportional to fitness. This means that individuals with higher fitness have a greater
chance of reproducing [11].

Figure 13: Diagram of crossover of a random segment in genetic
algorithms [11]

Figure 12: Pseudocode of genetic algorithms [11]

Figure 14: Diagram of mutation of a random bit [11]

ACKNOWLEDGEMENT

This work was done as part of the course "Fundamentals of Applied Research," under the guidance of Prof. Dr.
Slavko Pokorni.

REFERENCES

1. Millington, I. AI for Games, 3rd edition, 2019, pp. 195–196.
2. "Dijkstra’s shortest path algorithm | Greedy Algo-7." GeeksForGeeks. Available at:

h�ps://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/. Accessed: April 4, 2022.
3. "Breadth First Search (BFS) Algorithm." algotree.org. Available at:

h�ps://algotree.org/algorithms/tree_graph_traversal/breadth_first_search. Accessed: April 4, 2022
4. Black, P. E. "Manha�an distance." In Dictionary of Algorithms and Data Structures [online]. Paul E. Black, ed. 11

February 2019. Available at: h�ps://www.nist.gov/dads/HTML/manha�anDistance.html. Accessed: April 4, 2022.
5. "A* Search." Brilliant.org. Retrieved 10:24, April 4, 2022, from h�ps://brilliant.org/wiki/a-star-search/.

56

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://algotree.org/algorithms/tree_graph_traversal/breadth_first_search/
https://www.nist.gov/dads/HTML/manhattanDistance.html
https://brilliant.org/wiki/a-star-search/


Scientific Journal for Contemporary Education and Application of Information Technologies – EdTech Journal

6. Patrick, L. "A* pathfinding for beginners." GameDev WebSite. Available at:
h�ps://www.gamedev.net/reference/articles/article2003.asp. Accessed: April 4, 2022.

7. Wolsey, L. A. "Heuristic Algorithms." Integer Program., no. January, p. 17, 1998.
8. Rafiq, A. et al. "2020 IOP Conf. Ser.: Mater. Sci. Eng. 769 012021 'accepted for publication'."
9. Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 305–308.
10. Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 308–312.
11. Yang, X. S. Nature-Inspired Optimization Algorithms, 2014, pp. 116–130

This work is licensed under a Creative Commons A�ribution-NonCommercial-NoDerivs 3.0 Unported License.

57

https://www.gamedev.net/reference/articles/article2003.asp

