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Abstract This article explores the complexities of 
landslide risk assessment, emphasizing the qualitative 
nature of analysing hazards and consequences. It 
highlights the necessity for well-defined frameworks to 
evaluate these risks and the significant role of expert 
judgment in refining assessments due to inherent 
uncertainties. The text argues for the development of clear 
methodologies that stakeholders can understand and 
accept, incorporating best practices and local knowledge 
to mitigate legal risks associated with predictive 
inaccuracies. Additionally, it suggests the use of 
catastrophe modelling to solve the issues linked with 
uncertainty. 
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Introduction 

Risk management encompasses a more extensive 
definition of risk than that employed in risk analysis. As 
per ISO 31000 (2018), risk is conceptualized as: 

 
The “effect of uncertainty on objectives”.  
 
This notion includes the potential deviation from 

anticipated events, which could engender negative 
impacts, opportunities, or a combination thereof, on 
predefined objectives. Such objectives may be influenced 
by a myriad of event types at various process levels. Risk is 
distinguished by elements likely to yield expected or 
unexpected outcomes on the objective, coupled with their 
probability of occurrence. This definition is particularly 
pertinent to risk in decision-making contexts, such as risk 
management, where it is often contingent upon factors 
extrinsic to risk analysis.  

Moreover, the above definition acknowledges the 
possibility of risk leading to positive outcomes, a scenario 
considerably less frequent in the context of landslides. 
Decision-making and risk management inherently 
incorporate uncertainty, which, however, can be 
quantified through probabilities or qualitative 
assessments thereof (Aven and Renn, 2009). 

It is imperative to recognize that risk definitions are 
context dependent. In epidemiology, for instance, risk is 
quantified as the proportion of new disease cases in a 
specified period relative to the initial healthy population 
(Rothman, 2012).  

The methodology for analysing risks associated with 
slope movements varies case by case. Typically, a 

particular site is examined to assess potential disaster-
related costs or the probable number of casualties. 
Outcomes may be expressed as the probability of event 
impacts exceeding a defined threshold within a set 
timeframe, or as temporal frequencies of costs or fatalities. 
When calculating individual risk of mortality, it is 
represented as a death rate over time. This mortality risk 
is frequently juxtaposed with a societal risk acceptability 
criterion, defined in relation to the size of the affected 
population (Hungr and Wong, 2007). Thus, it is evident 
that: 

 
"Risk analysis involves applying recipes that may vary 

based on perspective and available data." 
 
Identifying the hazard is a primary step, yet 

quantifying it is often challenging, leading to 
predominantly qualitative risk assessments, especially 
when knowledge is limited to susceptibility. The potential 
impact or vulnerability for given landslide intensities is 
subject to considerable uncertainty (Galli and Guzzetti, 
2007), which means that qualitative assessment is 
pertinent. In such cases, methodologies like the 
probability-impact matrix, typically utilized by experts, 
are beneficial (Haimes, 2009; Porter and Morgenstern, 
2013).  

Despite its limitations, risk assessment remains a 
critical tool in decision-making, notably in cost-benefit 
analyses that guide risk mitigation strategies. Nonetheless, 
it is essential to acknowledge that risk is not the sole factor 
in decision-making; socio-economic considerations also 
play a significant role (Leroi et al. 2005).  

The difficulties in quantifying temporal frequency or 
hazard and consequences are for most landslide risk 
analyses based on susceptibility, as they are often based on 
the calibration of both scales.  

If the risk framework is clear, the application sensu 
stricto of risk assessment is rarely carried out, and the use 
of susceptibility is the most commonly used approach. 
Furthermore, where the hazard can be assessed 
quantitatively, it may be subject to considerable 
uncertainty.  

Some sections of this document are inspired by a 
book in preparation in French on landslides (Jaboyedoff et 
al. in prep.). 
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Risk Basics 

Basic formulas for risk and hazard (frequency) 
Considering the magnitude as a quantity describing the 
volume, surface area, energy, pressure, etc. the landslide’s 
risk quantification for one landslide scenario of magnitude 
Mi is classically given by (Corominas et al. 2014): 
 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑓𝑓(𝑀𝑀𝑖𝑖) 𝑃𝑃�𝑋𝑋𝑖𝑖�𝑀𝑀𝑖𝑖� 𝐸𝐸𝐸𝐸𝐸𝐸�𝑡𝑡�𝑋𝑋𝑖𝑖�  𝑉𝑉𝐸𝐸 �𝐼𝐼�𝑀𝑀𝑖𝑖 ,𝑋𝑋𝑖𝑖��  𝑊𝑊(𝑋𝑋𝑖𝑖(𝐸𝐸𝑖𝑖))

 [1] 
 

Where 𝑃𝑃�𝑋𝑋𝑖𝑖�𝑀𝑀𝑖𝑖� is the probability that an event of 
magnitude Mi reaches the point Xj, 𝐸𝐸𝐸𝐸𝐸𝐸�𝑡𝑡�𝑋𝑋𝑖𝑖�  is the 
exposure, which means the probability that the object or 
the person is located in Xi at the time t of the event, 
𝑉𝑉𝐸𝐸 �𝐼𝐼�𝑀𝑀𝑖𝑖 ,𝑋𝑋𝑖𝑖�� is the physical vulnerability of the object E 
hit by an event of magnitude Mi with an intensity I 
depending on the location Xj. W(Xj(Ek)) is the value of the 
object Ek located in Xj or the number of units like people, 
if there is no object in Xj then W is null. f(Mi) is the 
temporal frequency of a landslide of magnitude Mi or 
hazard. In fact, the frequency f or hazard H is calculated 
for a range of magnitude assuming that λ’(Mi) is the 
frequency density and λ(Mi) the cumulative of the 
temporal frequency to exceed Mi, for a range of magnitude 
Mi ±∆M it comes:  

 
𝑓𝑓(𝑀𝑀𝑖𝑖) = H(𝑀𝑀𝑖𝑖) = ∫ 𝜆𝜆′(𝑚𝑚) 𝑑𝑑𝑚𝑚𝑀𝑀𝑖𝑖+Δ𝑀𝑀

𝑀𝑀𝑖𝑖−Δ𝑀𝑀
 [2] 

 
knowing that it is not possible to know the time 

separating two events of the same magnitude; this can only 
be done by classes of values or using the directly λ(M). The 
relationship between temporal frequency and return 
period is given by (Hungr et al. 1999): 

 
𝜆𝜆(𝑚𝑚 ≥ 𝑀𝑀) = 1

𝑇𝑇(𝑚𝑚≥𝑀𝑀)
 [3] 

 
where λ(m≥M) is the frequency of events of 

magnitude greater than or equal to M, i.e. a cumulative 
frequency. The intensity is used to evaluate vulnerability, 
but often the event frequency is related to the source of 
the hazard of magnitude Mi and not to the intensity of the 
event at a given location X. A typical example is the 
rockfall hazard given by volumes of the source area, but it 
fragmented along the path (Farvacque et al. 2019; 
Lanfranconi et al. 2023 Ruiz-Carulla et al, 2016). When the 
vulnerability V concerns people, it can equal to lethality or 
a function of the vulnerability of the buildings including 
injuries (Li et al. 2010). 
Relationship Frequency - Probability 

The classic example is the distribution of landslide 
volumes. If f(Mi) is quantified, then the probability that 
during a period ∆t, n events will occur for a class of 

magnitude Mi using the Poisson distribution, provided 
that these events are independent: 

 
𝑃𝑃(𝑛𝑛,∆𝑡𝑡)  =  (𝑓𝑓(𝑀𝑀𝑖𝑖)∆𝑡𝑡)𝑛𝑛

𝑛𝑛!
 𝑒𝑒−𝑓𝑓(𝑀𝑀𝑖𝑖)∆𝑡𝑡 [4] 

 
The temporal frequency should not be confused with 

the probability, because some phenomena have a 
frequency greater than 1, whereas the probability cannot 
exceed one, which is a common mistake. So, it is only when 
T>>1 is large that the probability of an event per unit of 
time so: 

 
𝑃𝑃 ≈ 1

𝑇𝑇
 [5] 
 

In that case the probability of an event not occurring 
in a year is close to (1-P), and therefore the probability of 
at least one event occurring in d years is classically given 
by: 

 

𝑃𝑃(𝑛𝑛 ≥ 1,𝑑𝑑)  ≈  1 −  �1 − 1
𝑇𝑇
�
𝑑𝑑

  [6] 
 
But this formulation depends on the unit of time, 

because for T = d = 1 we get 100%, but respecting the 
hypothesis T>>1, for 8760 hours in a year we get 63.2%. It 
is therefore preferable to use the Poisson distribution by 
evaluating the probability that there is no event 
(Corominas et al. 2014):  

 

𝑃𝑃(𝑛𝑛 ≥ 1,𝑑𝑑)  =  1 −  𝑃𝑃(0,𝑑𝑑)  =  1 −  (𝑓𝑓(𝑀𝑀𝑖𝑖)𝑑𝑑)0

0!
 𝑒𝑒−𝜆𝜆𝑖𝑖𝑑𝑑  =

 1 −  𝑒𝑒−𝑓𝑓(𝑀𝑀𝑖𝑖)𝑑𝑑 [7] 
 

In fact, we can show that the two formulations are 
equivalent. In case of multiple events with reconstruction, 
the use of Poisson’s law for n= 1, 2, …, n maybe used, if 
significant. For small frequency the P≈f, there is less than 
2% difference for a ratio f/∆t=f/T>25. To perform a full risk 
calculation class of magnitude must be used and formally 
integration or a summation must be performed over Mi, Xj, 
(implicitly f(Mi)) and Ek: 

 
𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ ∑ ∑ 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  [8] 

 
Second form of risk 

An alternative way to present risk is to give a 
probability of occurrence given by the above formula and 
the damage or cost: 

 
𝐶𝐶�𝐸𝐸,𝑋𝑋𝑖𝑖 ,𝑀𝑀𝑖𝑖� = 𝐸𝐸𝐸𝐸𝐸𝐸�𝑡𝑡�𝑋𝑋𝑖𝑖�  𝑉𝑉𝑝𝑝 �𝐼𝐼�𝑀𝑀𝑖𝑖 ,𝑋𝑋𝑖𝑖��  𝑊𝑊(𝐸𝐸,𝑋𝑋𝑖𝑖) [9] 

 
This gives the possibility to create graphs such as 

consequences-frequency or frequency exceedance. Which 
is typically f-N or F-N curves (Farmer, 1967; Ale, 2008). The 
matrix usually represents C versus P or f, but if P is used 
the period d must be indicated, which is often omitted.  
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Matrix approach 

It is obvious that the F-N curves are a direct transcription 
of risk equation, it is rather easy create when all the terms 
of the risk formula are knows. But they present some 
drawbacks concerning the risk acceptability and 
tolerability limits, which is not well established for F-N 
and for the non-cumulative version f-N, they depend on 
the domain they are applied, at le level of a country or in a 
local context (Ale et al. 2015).  

In addition, the frequencies are not easily accessible 
like for earthquakes or flooding by their repetitive nature, 
using respectively Gutenberg-Richer law (Gutenberg and 
Richter, 1956) or Gumbel’s law (Gumbel, 1941). This is also 
true for the damage estimations. In both case probabilities 
can be used to assess which class of frequency or damage 
it belongs.  

The methodologies encompassed by Consequences-
Frequency Matrices (CFM) are designed to facilitate risk 
assessment through the hierarchical classification of 
various hazards (UK-CO, 2017) (Fig. 1). This approach is 
particularly tailored for individual case studies, addressing 
key inquiries as posited by Haimes (2008): namely, 
identifying potential failings, as well as their respective 
probabilities and repercussions. Concurrently, industrial 
and insurance sectors implement a systematic process for 
Risk Filtering, Ranking, and Management (RFRM), which 
is an efficient and effective identification, prioritization, 
and administration of risks (Krause et al. 1995; Haimes, 
2008; Jaboyedoff, 2023): 
1. Scope definitions: what are the problems? 
2. Creation of a group of experts concerned by each level 

of the analyzed risky system. 
3. Hazard identification, i.e. identification of potential 

events and their scenarios  
4. Risk filtering and ranking in several sub-stages which 

implies to establish frequency (probability) and 
impact classes and their corresponding limits (in loop 
with point 5)  

1.1. Use decision trees to select for C and f or H 
1.2. Place in risk matrix 

5. Establish a ranking. 
6. Risk management, including the quantification of the 

potential risk reduction, which necessitates the 
understanding of causes and effects 

7. Finalization of decision-making process 
8. Refinement of the process with the feedback 

 
The CFM must in principle follow certain rules. Cox 

(2008) highlights an inconsistency in the color-coded risk 
scale, particularly due to the ambiguity in classifying risks 
positioned at the boundaries of different categories (Fig. 
1). For instance, a data point situated at the juncture of 
three distinct risk classes may exhibit considerable 
classification variability. A mere unitary alteration in the 
axis values could potentially result in a shift of two entire 
class levels, thereby indicating a significant discrepancy in 
risk categorization. This phenomenon underscores the 

inherent challenges in maintaining a consistent and 
accurate risk assessment framework when utilizing 
colour-based scales. 

 

 
Figure 1 The illustration of 5 × 5 risk matrices presents two 
distinct configurations: firstly, a hyperbolic risk scale 
encompassing four classes (a), and secondly, a model 
incorporating risk aversion, characterized by a reduction to three 
classes (b). This comparative analysis underscores the variability 
in risk matrix structures and the impact of scaling and class 
alterations on risk assessment (modified form Jaboyedoff, 2023). 

 
Example of hazard consequences values  

 
Numerous exemplars of risk matrices exist within the risk 
domain. Porter and Morgenstern (2013) proposed a matrix 
for landslide risk assessment being particularly 
noteworthy (Fig. 2). This matrix provides the order of 
magnitudes of frequency and the different types of impacts 
delineating impacts across various domains such as Health 
and Safety, Environmental, and Social & Cultural factors. 
It underscores the imperative of maintaining fixed 
categories for likelihood estimation. However, it allows for 
the scaling of consequence metrics to align with specific 
objectives, such as adjusting for the scale of an enterprise 
or its associated bankruptcy risks. This adaptability 
renders the matrix a versatile tool in risk assessment. 

 
Defining the classes of consequences and frequency or 
probability 

To choose the membership to a class of consequences or 
frequency, several strategies can be used. It can be based 
on a set of indicators with weight which provide a value for 
one or for both scales as for geotechnical and geomorphic 
indicators used for quick clays risk analysis (Lacasse et 
Nadim, 2009). 
Decision trees are fundamental tools for the analysis of 
risks or hazards (Leroueil et Locat, 1998; Haimes, 2008; 
Lacasse et al. 2008). These methodologies are adept at 
providing class values for either one or both axes in risk 
assessment frameworks. The employment of dichotomous 
branching, as advocated in the context of pandemic 
analysis by ECDC (2011), is preferred due to the enhanced 
ease in decision-making it offers. For instance, the 
frequency or return period (Ti) can be inferred through the 
process illustrated in Fig. 3, which is dependent on 
climatic variables, although specific quantitative values 
are not specified. 

a. b.
5 5 10 15 20 25 5 5 20 45 80 125

4 4 8 12 16 20 4 4 16 36 64 100

3 3 6 9 12 15 3 3 12 27 48 75

2 2 4 6 8 10 2 2 8 18 32 50

1 1 2 3 4 5 1 1 4 9 16 25

1 2 3 4 5 1 2 3 4 5
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Figure 2 Illustration of a risk matrix, devised by BGC Engineering Inc. and proposed to the Geological Survey of Canada, is presented as 
a Sample Qualitative Risk Evaluation Matrix (Porter and Morgenstern, 2013). 

 

 
Figure 3 Example of a decision tree to determine the return 
period. 

For the consequences scale, implementing a decision 
tree to determine the class categories is a feasible method. 
This approach is exemplified in the case of a landslide 
threatening a road, as shown in Fig. 4. 

 

 
Figure 4 illustrates a decision tree used to ascertain the 
consequence levels for the Pont Bourquin landslide in 
Switzerland (from Jaboyedoff, 2023). 

Alternatively, experts can be consulted to assign the 
probability of falling into each class on the scale. This 
method, as suggested by Vengeon et al. (2001), involves 
setting the frequency through a probability-delay matrix 
for landslide failures. This technique is applicable to both 
consequence assessment and frequency determination. 

 
Temporal frequency and its estimates 

Temporal frequencies can be analysed in several 
ways, in particular using inventories with event 
chronologies (Jaboyedoff et al. in prep.). But when the data 
are not sufficient or regional, the lack of local temporal is 
compensated for data with other information. This 
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M Moderate

L Low

VL Very Low

Likelihood Descriptions Probability 
Range

Event typically occurs at 
least once per year F Almost certain >0.9 M H H VH VH VH
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few years E Very Likely 0.1 to 0.9 L M H H VH VH

Event expected to occur 
every 10 to 100 years D Likely 0.01 to 0.1 L L M H H VH
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expected to occur less than
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Partial Risk (annual probability) Risk is broadly acceptable; no further review or risk reduction required
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Significant impact to social &
cultural values; recoverable
w ithin months or years

Partial loss of social &
cultural values; not
recoverable within the
lifetime of the project

Complete loss of social &
cultural values
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Indices

Social & Cultural Negligible impact
Slight impact to social &
cultural values; recoverable
within days or w eeks

interruption loss or damage to public or private property

Multi-hazard Risk Evaluation Matrix (SAMPLE)

For the Qualitative Assessment of Natural Hazards

Risk Evaluation and Response

Risk is imminent; short-term risk reduction required; long-term risk reduction plan must be developed and  implemented

Risk is unnacceptable; long-term risk reduction plan must be developed and implemented in a reasonable  time frame.  
Planning should begin immediately

Risk is tolerable; continue to monitor and reduce risk to As Low As Reasonably Practicable (ALARP)

Risk may be tolerable; more detailed review required; reduce risk to As Low As Reasonably Practicable (ALARP)

The landslide will 
reach the road

No: It create 
disturbances 

No

Yes

Yes: It will affect a 
vehicle?

No: stop the traffic

Yes: It kill persons?

No: vehicle hit and 
traffic affected 

Yes

500 CHF
Very low

5’000 CHF
Low

50’000 CHF; Medium

500’000 CHF 
High

5’000’000 CHF 
Very high
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information can be weighted to create a local frequency or 
susceptibility scale. In the case of more detailed studies, 
seasonality can be integrated. 

This involves assessing the temporal frequency for 
areas ωi of the territory Ω (from a single landslide to an 
entire region) for a magnitude class Mj±∆M which, on 
average, can be broken down into three terms (modified 
from Guzzetti et al. 2005): 

 
λ�Ω, M𝑖𝑖 , t,ω𝑖𝑖� = λ𝑟𝑟(Ω, t)  ×  f𝑟𝑟�M𝑖𝑖� 𝑑𝑑𝑀𝑀 ×  PS(Ω,ω𝑖𝑖)  [10] 

 
so (λr, Ω, t) is the frequency of landslides in a region 

Ω at time t. t can be omitted, as the dependency is there 
simply to highlight the possible seasonal variability. From 
a practical point of view, we can estimate the temporal 
frequency for a given region Ω by:  

 
λ𝑟𝑟(Ω) = 𝑁𝑁0(Ω)

∆𝑡𝑡
 [11] 

 
where N0(Ω) is the number of landslides that have 

occurred during a period ∆t, per unit area, or not. fr(Mj) 
dM corresponds to the relative distribution of magnitudes 
equal to Mi given that : 

 
∫ f𝑟𝑟(M) 𝑑𝑑𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀0

= 1 [12] 
 
This formulation can be replaced by a discrete 

formulation, i.e. a sum of probabilities for several scenarios 
of different magnitudes. Finally, PS(Ω, ωi) is the 
probability of an event occurring within a given perimeter 
ωI of Ω, which may be the landslide itself or zones of 

identical susceptibility. PS(Ω, ωi) corresponds to a 
standardised susceptibility scale, i.e. a weighting that can 
be derived from different types of analysis, for example: 
counting of criteria favourable to the triggering of 
landslides (Hantz et al. 2003), regression on these 
parameters, probabilistic analysis, a neural network, etc. If 
we assume that si is a susceptibility value for one class 
among n susceptibilities, of m surfaces 𝑎𝑎𝑖𝑖𝑖𝑖 of class i, of any 
scale, then for a given class PS(Ω, ωi) we have : 

 

𝑃𝑃𝑃𝑃(𝜔𝜔𝑖𝑖) =
𝑠𝑠𝑖𝑖 ∑ 𝑡𝑡𝑗𝑗

𝑖𝑖𝑚𝑚
𝑗𝑗=1

∑ 𝑠𝑠𝑖𝑖 ∑ 𝑡𝑡𝑗𝑗
𝑖𝑖𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

  [13] 

 
With 
 

∑ 𝑃𝑃𝑃𝑃(𝜔𝜔𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 1 𝑒𝑒𝑡𝑡 Ω = ∑ 𝜔𝜔𝑖𝑖

𝑛𝑛
𝑖𝑖=1 =  ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1  [14] 

 
Examination of all the variables shows that it is often 

difficult to estimate them all, and that some are often fixed 
at 1, which amounts to ignoring them. Many studies use 
only values of PS(Ω, ωi), si or ωi and/or expert opinions 
which produce scales of susceptibility in the broadest 
sense ranging from negligible, for example, through low, 
medium and high to very high. Others are based on the 
distribution of magnitudes fr such as volumes, with or 
without the use of λr, or simply by choosing a single class 
of volume i.e. fr(Mj) dM = 1, PS =1, and λr per unit area. This 
shows the great diversity possible in the assessment of 
"hazard", or susceptibility. It can exist in very different 
forms.  

 
 

 

Figure 5 Synthetic illustration of the calculation of the temporal frequency of landslides (in grey) per slope unit. Here, in fact, by 
simplification, PS(Ω, wi) is equal to the ratio of the surface area of landslides on a slope unit to the total surface area of all landslides, 
since the choice to quantify si by the ratio of the total surface area of landslides alj to that of a unit ai is based on this assumption.  
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The Fig. 5 an Table 1 show a synthetic example of such 
an approach. Based on an inventory of landslides in a 
catchment area that is subdivided into slope units 
(bounded by rivers and ridges; Carrara et al. 1991; Guzzetti 
et al. 2005). To simplify matters, the susceptibility si is 
calculated as the ratio of the surface area of the landslides 
to the surface area of the units containing them, fr(Mj) dM 
= 1 for all Mj as only one class of volumes above 104 m3 is 
considered, and PS and λ are calculated according to the 
formulae set out above. In a true statistical analysis, none 
of the values of si would be zero.  

 
Table 1 Calculation of non-zero frequencies per slope unit of Fig 
5.. 

i ωi = ai 

[m]2
 

Surf. 
landslides 

[m2] 
si 

fr(v≥ 
104m3) PS(ωi) λ(ωi) 

1 174'600  34'300  0.196  1 0.143  0.057  
4 255'500  21'000  0.082  1 0.087  0.035  
5 222'600  18'500  0.083  1 0.077  0.031  
6 347'300   5'600  0.016  1 0.023  0.009  
7 253'000   5'900  0.023  1 0.025  0.010  

11 343'900  80'000  0.233  1 0.333  0.133  
12 332'100  27'700  0.083  1 0.115  0.046  
13 337'500   4'000  0.012  1 0.017  0.007  
15 160'400  30'600  0.191  1 0.127  0.051  
17 269'800  12'700  0.047  1 0.053  0.021  

     Total  1.000  0.400  
 
λr is often estimated based on historical inventories, 

observations of signs of activity, or expert opinion. Dating 
using C14 or cosmogenic nuclides, etc. is possible, but 
difficult to implement on a regional basis; however, 
analysis using dendrochronology and observations of 
damage to trees provides interesting results, particularly 
for debris flows and boulder falls (Stoffel et al. 2010) (Fig. 
6).  

 
Figure 6 Debris flow activity in the Geisstriftbach (Switzerland), 
based on observations of tree damage and 
dendrogeomorphology. From 1910 onwards, the trees were 
sufficiently well preserved to show stationary activity, with an 
average of one event every 2 or 3 years (based on data from Stoffel 
et al. 2010). 

 

Examples 

Assessing risk based on matrix approach 
As an example of matrix approach for risk analysis, 
Cardinali et al. (2002). They established a hazard map in 
Umbria region (Italy). The obtain risk at objects for the 
area of Rotecastello village. They used first a matrix to 
assess the landslide intensity (Fig. 7a) by crossing 
velocities and volumes, which provided a ranking of 
intensity. The landslide frequency was estimated using 
four classes, based on the number of landslide events (of 
the same type) observed within each Landslide Hazard 
Zone (low 1 event over 60 years, …, very high > 3 ev./60 
yrs.). The landslide hazard (LHZ) matrix was obtained by 
crossing intensity and frequency (Fig. 8). 

 

 
 

 

Figure 7 (a) Landslide intensity matrix based on volumes and 
velocities, for 3 main types of landslides. (b) Impact of landslides 
on infrastructures expected for elements at risk. A = superficial 
(low) damage; F = functional (or medium) damage; S = structural 
(or total) damage. Intensities are shown in (a) (modified from 
Cardinali et al. 2002). 

The vulnerability was defined based on the intensity 
scale for each type of landslides for many types of objects 
(Fig. 7b). As the LHZ matrix is linking frequency and 
intensity and as the intensity and damage increase it can 
be considered as a risk matrix (Fig. 8). But observations 
showed that were not all fitting the scale. Indicating that 
uncertainty was not included.  
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Figure 8 Interpretation of the theoretical LHZ matrix of Carinali 
et al. (2002) in terms of risk: the yellow correspond to low risk, 
orange to medium, red to high and purple to very high. Not that 
there is no contact between three classes.  

Assessing risk based on indicators 
Norway has implemented a straightforward methodology 
for risk zoning in the context of sensitive clays, as 
developed by Lacasse and Nadim (2009). This method 
involves assigning weights wai to various indicators Sai to 
derive the susceptibility to landslide which means that it 
is only based on PS estimations. The hazard is categorized 
into 4 classes Sai: null, low, medium, and high levels, based 
on a weighted system accounting for 8 parameters, i.e. 
topography, geotechnical properties, dynamic conditions 
like erosion, human activity, historical landslide 
occurrences, etc. 

Similarly, consequences are evaluated on a scale Scj 
from not serious to very serious (0-3), considering 7 factors 
such as loss of life, property damage, and economic or 
social impacts which are weighted by wci.  

The risk index (RI) is calculated for different zones by 
multiplying the susceptibility index (SI) and the 
consequences index (CI), using a formula that combines 
the weighted sums of hazard and consequence indicators 
(Figure 9): 
𝑅𝑅𝐼𝐼 =  𝑃𝑃𝐼𝐼  ×  𝐶𝐶𝐼𝐼 =  (∑ 𝑤𝑤𝑎𝑎𝑖𝑖8

𝑖𝑖=1 × 𝑃𝑃𝑎𝑎𝑖𝑖)  ×  �∑ 𝑤𝑤𝑤𝑤𝑖𝑖7
𝑖𝑖=1 ×  𝑃𝑃𝑤𝑤𝑖𝑖�  

 [15] 
This methodology categorizes RI into five distinct 

classes ranging from very low to very high. It enables the 
creation of risk maps through a consequence-
susceptibility diagram (Figure 9b), aiding in risk 
assessment. Associated actions range from geotechnical 
investigations to mitigation measures. This risk 
assessment approach is part of a broader spectrum of 
methods that integrate hazard, impact, and risk estimates, 
using various parameters and can be adapted to statistical 
or artificial intelligence methods. 

 
Uncertainty of the frequency estimations 

The magnitude- frequency relationship for rockfalls 
instability sources failure hazard can be characterized 
using power law frequency cumulative distributions 
(Hungr et al. 1999; Dussauge et al. 2003; Hantz et al. 2020): 

 
𝐹𝐹𝑠𝑠(𝑣𝑣𝑠𝑠 ≥ 𝑉𝑉) = 𝑎𝑎𝑠𝑠 𝑉𝑉−𝑏𝑏𝑠𝑠 [16] 

 
In this equation, as denotes the frequency of volumes 

exceeding a specified threshold, reflecting the active 
nature of a region (Figure 10). The bs-value in the equation 

is indicative of the frequency of encountering larger 
volumes which correspond to λ(Mi) described above. 

 

 
Figure 9 a. Landslide risk map for sensitive clays in the Modum 
region of Norway (from Lacasse and Nadim, 2009). b. Risk classes 
in a consequence-hazard or susceptibility diagram (based on the 
criteria of Lacasse and Nadim, 2009) 

The frequency distribution approach, currently a 
principal method for quantifying hazard in terms of both 
diffuse failures and released propagated blocks, is not 
without its limitations. One significant drawback is the 
potential for substantial uncertainty. The power law used 
in this approach can be fitted using linear least squares 
regression or the maximum likelihood estimation (MLE) 
method, as noted by Dussauge et al. (2003). However, the 
reliability of this fitting is contingent upon the number of 
data points available. Despite achieving a perfect fit (R² = 
1.0) with a reasonable dataset, simulations based on the 
derived power law will likely yield a lower R², indicating 
inherent uncertainty in such a frequency distribution. 
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Figure 10 (a) Confidence intervals for the power law, derived from 
one million Monte Carlo simulations for 42 events. The original 
data from the La Brenva scar in Italy are represented by grey dots. 
(b) The probability that a volume equal to or larger than 8 × 10⁴ 
m³ will not exceed a certain return period (adapted from Fei et 
al. (2023)). 

 
To ascertain the probability of a specific volume 

occurring within a given return period T, one can conduct 
simulations based on the fitted power laws. Repeated 
fittings across these datasets will yield a range of T-values 
for any given volume, as demonstrated by Fei et al. (2023) 
and illustrated in Figure 10b. For example, there is an 83% 
likelihood that an event with a volume equal to or greater 
than 8 × 10⁴ m³ will have a return period of less than 10 
years, highlighting the inherent uncertainty in predicting 
specific volume occurrences. 

 
Discussion and conclusions 

The delineation of risk encompasses multiple facets, 
elucidated through diverse examples, indicating that risk 
frequently emanates from a qualitative analysis of two 
primary dimensions: hazard and consequences. Thus, the 
appraisal of risk is customarily conducted by experts 
within the domain. However, the imperative for 
establishing well-defined guidelines and frameworks for 
the evaluation of hazards, impacts, and consequentially, 
risk, is paramount (Corominas et al. 2014). Such a process 
necessitates meticulous attention towards its formulation, 

facilitating the quantification of risk to inform decision-
making processes. It is essential that stakeholders, 
encompassing both institutional and private entities, 
possess the capacity to reconstruct, comprehend, and 
endorse the methodology employed in deriving the 
outcome (Corominas et al. 2014). Furthermore, the 
assessment scale should embody the epitome of current 
best practices, incorporating extant data and regional 
expertise. Absence of adherence to these principles 
significantly escalates the potential for legal disputes in 
instances of predictive inaccuracies (Griffiths, 1999). 

Even in scenarios where risk can be quantitatively 
evaluated with a degree of precision, such as in rockfall 
events through simulation techniques and the analysis of 
rockfall sources failure frequencies, a substantial level of 
uncertainty persists (Fei et al. 2023). This uncertainty 
necessitates that final evaluations are frequently refined by 
domain experts, underscoring the indissoluble link 
between susceptibility and risk assessments. This principle 
equally pertains to the evaluation of vulnerability. As a 
result, the employment of catastrophe modeling (CAT 
models) (Mitchell-Wallace et al. 2017), which incorporate 
uncertainty to generate an exceedance probability curve 
(Macciotta et al. 2016; Jaboyedoff et al. 2021), represents a 
potential strategy for navigating the inherent paradox 
presented by the inseparability of susceptibility, 
vulnerability, and risk assessments. 
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