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Abstract Landslides are a significant natural hazard that 
can cause severe damage to infrastructure and impact local 
communities' safety and prosperity. Accurate and reliable 
prediction of deformation caused by landslides is crucial 
to implementing effective disaster management strategies 
that can mitigate the risk of landslides and their impact on 
communities and provide an accurate early warning 
system. This study proposes a comprehensive approach to 
cumulative deformation induced by landslide prediction 
in the Caiazzo hamlet (southern Italy), a critical area that 
has experienced significant landslides that have impacted 
settlements and infrastructure. The study uses a CNN-
LSTM algorithm with Spatio-Temporal dependency to 
predict cumulative deformation caused by landslides, 
employing geological, geomorphological, and geospatial 
data as predisposing factors. These factors include 
elevation, slope, aspect, Topographic Wetness Index 
(TWI), Stream Power Index (SPI), geology, flow direction, 
curvature, Normalized Difference Vegetation Index 
(NDVI), and land use. The Permanent Scatterer 
Interferometry (PSI) technique was applied on 132 and 143 
SENTINEL1-A ascending and descending tracks, 
respectively, to obtain cumulative deformation data as 
labels, providing an extensive data set that allowed for 
accurate and reliable prediction of landslide deformation. 
The proposed CNN-LSTM algorithm integrates 
convolutional neural networks (CNNs) and long short-
term memory (LSTM) networks to learn the spatio-
temporal dependencies between landslides' predisposing 
factors and their cumulative deformation. This approach 
allows the algorithm to capture the complex relationships 
between the predisposing factors and the occurrence of 
landslides, resulting in accurate and reliable 
understanding of landslide kinematics and providing early 
warning system accurately. The close match between 
predicted and observed cumulative deformation indicates 
that the CCN-LSTM model effectively captures the 
complex relationships between the various factors 
contributing to cumulative deformation prediction. Our 
finding illustrates more than 70% of predicted 
deformation with less than 2 mm error and 90% with less 
than 5 mm error after prediction. Overall, the proposed 
algorithm's superior performance in predicting 
cumulative deformation caused by landslides highlights 

the potential of deep learning algorithms to enhance 
landslide prediction and disaster management strategies.  
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Introduction 

The Landslides are one of the most pervasive natural 
hazards globally, posing a significant threat to human 
lives, infrastructure, and ecosystems (Di Martire et al., 
2015). These geological phenomena, characterized by the 
downward and outward movement of slope-forming 
materials, are triggered by various factors that can 
significantly vary across different geographical locations. 
These triggers include intense precipitation, seismic 
activities, volcanic eruptions, anthropogenic actions such 
as deforestation, urban development, and alterations in 
land use (Calò et al., 2009). The complexity and interplay 
of these triggers necessitate a sophisticated approach to 
understanding, predicting, and managing landslide risks 
(Bravo-López et al., 2022). 

Focusing on the Caiazzo hamlet in southern Italy, 
this area exemplifies a region highly susceptible to the 
devastating effects of landslides (Sammartini et al., 2019). 
The lithological setting, characterized by weak geological 
materials coupled with the region's geotechnical 
properties, such as soil composition and water content, 
significantly contributes to slope instability. This 
instability is further exacerbated by human activities and 
climatic factors, leading to morphodynamic events that 
have historically impacted the local communities and 
infrastructure. The landslides in Caiazzo, encompassing 
both active and dormant phases, manifest predominantly 
as rotational and translational slides and Earth flows 
(Carannante et al., 2010). 

The advent of remote sensing technologies, 
particularly Multi-temporal Interferometric Synthetic 
Aperture Radar (MT-InSAR), has revolutionized the 
monitoring and analysis of landslides. Among the 
techniques derived from MT-InSAR, the Permanent 
Scatterer Interferometry (PSI) technique stands out for its 
precision in detecting and measuring ground 
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displacement over time (Hooper, 2008). SENTINEL1-A 
satellite imagery equipped with Synthetic Aperture Radar 
(SAR) is particularly advantageous in landslide studies. 
SAR's ability to penetrate cloud cover and its 
independence from daylight conditions make it an 
invaluable resource for continuously monitoring Earth's 
surface changes, including the subtle displacement 
preceding or indicating landslide activity (Potin et al., 
2016). 

Predicting the cumulative deformation caused by 
landslides is crucial for the timely implementation of 
disaster management and mitigation measures  Khalili et 
al., 2023a). This prediction is inherently challenging due to 
the need for integrating diverse and complex datasets, 
encompassing spatial data on predisposing factors and 
temporal data on landslide cumulative deformation. 
Machine Learning Algorithm (MLA) has been applied in 
various ways to predict landslides accurately and rapidly 
(Gan et al., 2019). It includes Decision Trees, Random 
Forests (Hong et al., 2016), and Support Vector Machines 
(Liu et al., 2021), which are extensively used to detect 
landslides. However, most time-series prediction 
applications prefer Deep Learning Algorithms (DLAs) over 
traditional statistical models. Yet, they cannot describe the 
behaviour of multivariate time series. DLAs can analyze 
datasets with multiple dimensions by integrating 
numerous processing layers, extracting learning features, 
and nonlinear dependencies ( Khalili et al., 2023b; Li et al., 
2020). Recent advances in the field have shown that DLAs 
can be used as a model for predicting deformation 
(Hajimoradlou et al., 2020). 

The introduction of Convolutional Neural Networks 
(CCN) and Long Short-Term Memory (LSTM) networks 
marks a significant advancement in the field of landslide 
prediction (Greff et al., 2017; Zarándy et al., 2015). CCNs are 
adept at processing spatial data, including geospatial data 
(predisposing factor), to identify patterns and features 
indicative of landslide susceptibility. On the other hand, 
LSTMs excel in analyzing time-series data, making them 
ideal for modeling the temporal progression of landslide 
cumulative deformations based on historical and real-time 
data. 
Our study proposes a novel approach that synergizes the 
spatial data processing capabilities of CCN with the 
temporal data (cumulative deformation) modeling 
strengths of LSTM. This integrated CCN-LSTM model is 
designed to harness the full potential of both neural 
network architectures, thereby providing a more accurate 
and reliable prediction of landslide-induced cumulative 
deformations in the Caiazzo hamlet. By doing so, this 
research addresses the existing challenges in accurately 
predicting landslides and contributes to the development 
of more effective early warning systems and disaster 
management strategies. 

Case Study 

Caiazzo is a municipality of Campania region (Italy) 
located in the Caserta province, in the northern part of the 
regional territory, at 200 m a.s.l. According to the CARG 
Project (Geological Cartography of Italy), the area is 
mainly characterized by coarse sandstones, 
conglomerates, and microconglomerates, which belongs 
to Caiazzo Sandstones Unit. Such formation is also 
composed by marly-silty intercalations and chaotic 
deposits alternate with extra-basial elements 
(olistostroms) consisting of limestone and marly 
limestone referable to scaly clays. These rocks alternate 
with eluvial and colluvial deposits (Holocene-Current), 
which are silty-sandy deposits of a pyroclastic nature with 
calcareous clasts and silty-clayey deposits with arenaceous 
or calcareous-marly clasts. In the northern sector of the 
urban center Pietraroja Formation (Tortonian) of Matese-
Taburno-Camposauro Unit outcrops, it consists of 
stratified clayey-silty marls and subordinate fine 
sandstones. While, in the southern sector Casalnuovo-
Casoria Unit outcrops, including levels of laminated 
cinerites passing through a level of pumices in a cineritic 
matrix (Pleistocene Sup. - Holocene).  
From a geomorphological and structural point of view, 
Caiazzo area is characterized by a landscape with reliefs 
with medium-low slopes (less than 20°), consisting of 
arenaceous-marly-clay lithostratigraphic units, and areas 
at lower altitudes characterized by Quaternary eluvial-
colluvial deposits. The arenaceous hilly reliefs are in 
stratigraphic (Scarsella, 1971) and tectonic (Pescatore et al., 
1971) relationship with the underlying formations. These 
lithologies have low resistance to erosion, so although 
some tectonic structures (normal faults NE-SW) are 
present, they do not have significant structural 
morphologies. The slopes are concave-convex, and they 
are characterized by linear erosion valleys and landslide 
bodies of various typologies and sizes (Carannante et al., 
2010).  
The lithological and geotechnical characteristics of the 
investigated area contribute to the instability of the hilly 
slopes. They are affected by gravitational phenomena, 
marked by different morphodynamic events. Specifically, 
they involve the terrigenous units of Caiazzo and consist 
of active and quiescent landslides (Carannante et al., 2010), 
mainly rotational and translational slides and earth flows. 
The landslides involving arenaceous slopes are in total 140, 
they include 99 rotational/translational slides, 20 mass 
creep, 17 soil creep, 3 falls and 1 undefined landslide (Fig. 
1). Many of them have a complex style and consist of slide 
evolving to flows, that overtake 1000 m. As could be seen, 
this area is characterized by a large number of mass 
movements which affect urban center and rural zones, 
therefore, they represent a danger for structures and 
infrastructures, in particular in the eastern sector of the 
town. 
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Figure 1 Landslides inventory map of Caiazzo municipality. 

Material 

SAR Data Acquisition 
Synthetic Aperture Radar (SAR) data have emerged 

as indispensable tools in natural disaster analysis, 
particularly landslide detection and monitoring. SAR's 
unique advantages, including its all-weather, day-and-
night operation capabilities and its sensitivity to ground 
movement, make it ideal for observing and analyzing 
Earth's surface changes over time. This study utilizes SAR 
data from the SENTINEL1-A satellite, part of the 
Copernicus program managed by the European Space 
Agency (ESA), which provides comprehensive coverage 
and detailed images essential for monitoring landslide-
prone areas (Potin et al., 2016). 

The SAR data for the Caiazzo hamlet were acquired 
from the SENTINEL1-A satellite, focusing on ascending 
and descending tracks to capture comprehensive 
deformation patterns across different times and 
viewpoints. A total of 132 ascending and 143 descending 
tracks from 14/01/2017 to 25/11/2021 and from 16/01/2017 to 
27/11/2021, respectively, were analyzed to ensure a robust 
dataset for accurate cumulative deformation analysis as 
temporal data for training and predicting by LSTM 
algorithms. 
Predisposing Factors 

In the context of landslide prediction, predisposing 
factors are critical elements that contribute to the 
likelihood of landslide occurrence. These factors, derived 
from geological, geomorphological, and geospatial data, 
provide a foundation for understanding the conditions 

under which landslides are most likely to occur. This study 
incorporates a comprehensive set of predisposing factors, 
including elevation, slope, aspect Topographic Wetness 
Index (TWI), Stream Power Index (SPI), geology, flow 
direction, curvature, Normalized Difference Vegetation 
Index (NDVI), and land use. Each factor plays a vital role 
in the landslide prediction model, contributing to 
accurately assessing landslide susceptibility. 

The study makes use of primary geological, 
geospatial, and geomorphological data, including: 

i) To understand the geological background, A 
geological map of the Caiazzo hamlet with a scale of 
1:50,000. 

ii) A Digital Elevation Map (DEM) of the case study 
with a 20-meter pixel resolution, primarily utilized to 
investigate the topographic and geomorphological 
features of the Caiazzo hamlet, such as elevation, slope, 
flow direction, aspect, curvature, Topographic Wetness 
Index (TWI), and Stream Power Index (SPI). 

iii) Landsat7 ETM+ took remote sensing images with 
a 30-meter resolution for bands 1 to 7 to discuss the 
climatic and environmental characteristics of the Caiazzo 
hamlet. This data is used to acquire the normalized 
differential vegetation index (NDVI) and land use type. 

Methods 

Permanent Scatterer Interferometry (PSI) technique 
Permanent Multi-temporal Interferometric Synthetic 

Aperture Radar (MT-InSAR) is a sophisticated technique 
that analyzes phase differences in SAR images over time to 
detect ground deformations. This approach offers 
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unparalleled precision in measuring surface movements, 
which is essential for monitoring geological hazards. MT-
InSAR's capability to capture data under any weather 
conditions and its broad area coverage make it an 
invaluable dataset for understanding and predicting 
natural disasters, including landslides and earth 
subsidence (Ferretti et al., 2001; Hanssen and Ferretti, 
2002). 

Permanent Scatterer Interferometry (PSI) is a 
specialized subset of MT-InSAR that focuses on the 
identification and monitoring of stable reflection points or 
permanent scatterers over time. This method enhances 
the accuracy of deformation measurements in urban or 
rocky terrains, where two-pass InSAR might face 
challenges due to coherence loss. PSI's ability to provide 
long-term deformation trends with millimeter-level 
accuracy is critical for assessing structural stability and 
ground movements, offering vital data for infrastructure 
planning and risk assessment (Hooper, 2008). 

A Digital Elevation Model (DEM) with a cell 
resolution of 20m × 20m and a multi-looking factor of 1 × 1 
in range and azimuth is used for this technique in this 
study. The SUBSIDENCE software developed at 
Universitat Politecnica de Catalunya implemented the 
Coherent Pixels Technique and was used to apply the PSI 
method (Blanco-Sànchez et al., 2008). The software 
processed the co-registered images and selected all 
possible interferogram pairs (including 456 for ascending 
track and 428 for descending) with spatial baselines lower 
than 100 meters. It used a Temporal Phase Coherence 
threshold of 0.7. Finally, the deformation rate map along 
the line of sight (LoS) and time series of cumulative 
deformation was calculated. 
Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) represent a 
class of deep neural networks highly effective at processing 
data with a grid-like topology. A fundamental concept in 
CNNs is their ability to learn spatial hierarchies of features 
automatically and adaptively from input data. This is 
achieved through convolutional, pooling, and fully 
connected layers (Zarándy et al., 2015).  

Our paper explores using CNNs to identify and learn 
spatial patterns from predisposing factors related to 
landslide occurrences. By treating each predisposing 
factor as a separate channel (similar to the RGB channels 
in color images), we can feed a multi-dimensional array 
into the CNN, where each layer is designed to detect 
patterns and features indicative of potential landslide 
hazards automatically. Through convolutional and 
pooling layers, the CNN condenses this spatial 
information into a high-level feature vector that 
encapsulates the critical spatial dependencies among 
these predisposing factors. This vector serves as a compact 
yet rich representation of the input data, which is then 
used by the LSTM network to predict landslide cumulative 
deformations by considering the temporal evolution of 
these spatial features. This approach allows us to leverage 
the strengths of CNNs in processing visual data and in any 

domain where understanding spatial relationships is 
critical to making accurate predictions. 

For the CNN component of our study, we calibrate 
and tune an array of hyperparameters to ensure optimal 
extraction and learning of spatial patterns from the 
predisposing factors associated with landslides. These 
hyperparameters, set before the training phase, play a 
pivotal role in defining the architecture and learning 
dynamics of the CNN. Key hyperparameters for our CNN 
include the number of convolutional layers (12 layers), the 
number of filters (initial layer = 64 and deeper layer = 256) 
in each convolutional layer, and the size of these filters 
(3x3). We chose ReLU as an activation functions enabling 
it to learn complex patterns. Pooling layer configurations, 
specifically the selection of max pooling and their 
respective kernel sizes (2x2), dictate the Downsampling 
strategy, affecting the model's sensitivity to feature 
localization. The dropout rate (0.3) is another crucial 
hyperparameter that prevents overfitting by randomly 
omitting a subset of features during training. Lastly, the 
learning rate and optimization algorithm (Adam) are fine-
tuned to balance the speed and stability of the learning 
process. 
Long Short-Term Memory (LSTM) 

LSTM networks are a special kind of Recurrent 
Neural Network (RNN) architecture designed to overcome 
the limitations of traditional RNNs in capturing long-term 
dependencies. LSTMs are particularly adept at 
remembering information for extended periods, thanks to 
their unique structure, which includes memory cells and 
multiple gates (input, output, and forget gates). These 
components work together to regulate the flow of 
information, allowing the network to retain or discard data 
based on its relevance to the task at hand. This capability 
makes LSTMs highly effective for various sequence 
prediction problems (Greff et al., 2017; Khalili et al., 
2023b).  

In our paper, we leverage LSTM's prowess in 
handling time-series data to model the temporal aspect of 
landslide deformation, explicitly focusing on cumulative 
deformation data obtained from ascending and 
descending tracks. The cumulative deformation data, 
characterized by its sequential nature over time, serves as 
an ideal input for the LSTM network, allowing it to learn 
the temporal patterns and dependencies inherent in the 
deformation process. By training separate LSTM models 
on datasets from ascending and descending tracks, we aim 
to capture the nuances and variances in deformation 
patterns that might be specific to the direction of satellite 
observation. This dual approach enables a more 
comprehensive understanding of landslide dynamics, 
potentially improving prediction accuracy by integrating 
insights from both perspectives. Each LSTM model is 
trained on a sequence of past deformation measurements 
to predict future deformation, utilizing the LSTM's 
capacity to learn from long-term sequences to anticipate 
changes in landslide behaviour over time in ascending and 
descending separately.  
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In our research, optimizing and fine-tuning 
hyperparameters for the LSTM component are critical to 
accurately modeling the temporal dynamics of cumulative 
landslide deformation. Key hyperparameters for the LSTM 
include the number of hidden layers and the number of 
units (or neurons) in each layer, which dictate the model's 
capacity to learn from the data. Typically, we experiment 
with one to three hidden layers containing 50 to 200 units, 
balancing model complexity with computational 
efficiency. The learning rate, another crucial 
hyperparameter, is carefully selected to ensure 
convergence without overshooting, with initial values set 
at 0.001. The optimizer's choice, Adam, is made to 
effectively minimize the loss function, considering their 
ability to adapt learning rates based on the history of 
gradients. Dropout rates are applied within the LSTM 
layers, 0.3, to prevent overfitting by randomly omitting a 
subset of the features during training. The sequence 
length, or the number of times steps the LSTM looks back 
on, is six time steps of cumulative deformation, ensuring 
the model captures relevant temporal patterns without 
noise. Batch size is another parameter adjusted for 
efficient training, 64, balancing the trade-off between 
training speed and memory constraints. These LSTM 
hyperparameters are iteratively refined through validation 
and cross-validation, aiming to achieve a model that 
generalizes well to unseen data while accurately capturing 
the temporal patterns in cumulative deformation and 
predicting the cumulative deformation in a specific time. 
Proposed CNN-LSTM Algorithm 

In our study, we propose a novel CNN-LSTM hybrid 
model that leverages the strengths of CNNs and LSTM 
networks to accurately predict landslide cumulative 
deformations by effectively capturing both spatial and 
temporal dependencies. The CNN component is a 
powerful feature extractor, processing predisposing 
factors such as slope, aspect, etc, to identify relevant 
spatial patterns and interactions. These extracted high-
level spatial features are then passed onto the LSTM 
component, which is adept at modeling time-series data 
(ascending and descending cumulative deformation). The 
LSTM uses these features to learn the temporal dynamics 
of cumulative deformation, considering the sequential 
nature of the data and its historical progression. This 
synergistic combination allows our model to understand 
how spatial configurations evolve, leading to more 
accurate and insightful predictions of landslide 
occurrences. By integrating CNN's spatial analysis 
capabilities with LSTM's temporal dependency modeling, 
our CNN-LSTM architecture offers a comprehensive 
approach to landslide prediction, effectively harnessing 
the complex interplay between the various factors 
influencing landslide dynamics. 

Results and Discussion 

Fig 2a represents the cumulative deformations on 
25/11/2021 for the ascending track, and Fig 2b represents 
the last predicted epoch for cumulative deformations on 
the same date, to help understand how the proposed 
prediction model (CCN-LSTM) works. The model 
correctly predicted positive and negative deformation 
amounts and locations, with a mean absolute error of 0.29. 
Fig 3a and b also show a good agreement between actual 
and predicted cumulative deformation on 27/11/2021, with 
a mean absolute error of 0.34. 

Figg. 2 and 3 demonstrate that our model provides an 
excellent fit to the observed data, indicating its ability to 
predict cumulative deformation accurately and reliably 
and, thus, the risk of landslides in the studied area. The 
close match between the predicted and observed 
cumulative deformation shows that the CCN-LSTM model 
effectively captures the complex relationships between the 
various factors contributing to cumulative deformation 
prediction, such as geological, geomorphological, and 
geospatial data types. These figures highlight the potential 
of the CCN-LSTM model as a valuable tool for predicting 
cumulative deformation and the risk of landslides, which 
can inform decision-making and disaster response efforts. 

The Bland-Altman plot presented herein is a 
graphical method to assess the agreement between the 
cumulative deformation predicted by our model and the 
observed deformation data. On the y-axis, the differences 
between the observed and predicted values are plotted 
against their mean on the x-axis, providing a direct 
visualization of the prediction error distribution. 

The plot is color-coded to represent different ranges 
of actual cumulative deformation, with distinct colours 
denoting the intervals as specified: less than -2 mm, 
between -2 mm to 2 mm, and greater than 2 mm. This 
colours scheme enables a quick visual correlation between 
the magnitude of cumulative deformation and the 
associated prediction error. Horizontal lines are drawn at 
±2 mm and ±5 mm to denote the acceptable error 
thresholds. According to the analysis encapsulated by the 
plot, a substantial majority of the data points—
represented by their spread along the zero line—fall 
within the ±2 mm error margin, consistent with the 
assertion that over 70% of the deformation predictions are 
within this range. Furthermore, when considering the 
wider ±5 mm margin, the data points enveloped by this 
criterion rise to 90%, underlining the robustness of the 
predictive model. The distribution of points across the plot 
reveals a clustering around the mean difference line, which 
indicates a high accuracy level in the predictions across the 
range of cumulative deformation values. Points outside 
the ±5 mm bounds are few, suggesting that the prediction 
errors are generally minor, and the model’s performance is 
dependable. Tab 1 presents the proposed algorithms' 
evaluation metrics for ascending and descending tracks. 
Two key metrics assess the model's performance: the Root 
Mean Square Error (RMSE) and the R-squared (R^2) score. 
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Figure 2 Location and map of deformation by a) PSI technique 
and b) CCN_LSTM (Unit: MM) in ascending track. 

 
Figure 3 Location and map of deformation by a) PSI technique 
and b) CCN_LSTM (Unit: MM) in descending track. 

 

 
Figure 4 Bland-Altman plot showing prediction accuracy for 
cumulative deformation, with over 70% of predictions within 
±2mm error and 90% within ±5mm error. 

RMSE: This metric measures the average magnitude 
of the errors between the predicted values by the model 
and the actual values. It's beneficial because it gives more 
weight to significant errors, making it sensitive to outliers. 
A lower RMSE value indicates a better fit of the model to 
the data. According to the table, the CNN-LSTM model 
applied to the ascending track data has an RMSE of 0.26, 
suggesting it predicts cumulative deformation with 
relatively small errors. The descending track data's RMSE 
is slightly higher at 0.32, indicating more significant 
average prediction errors. 

R2 Score: Also known as the coefficient of 
determination, the R^2 score measures the proportion of 
the variance in the dependent variable that is predictable 
from the independent variables. It indicates the model's 
goodness of fit. An R2 score of 1 indicates perfect 
prediction, while a score of 0 would mean that the model 
fails to accurately predict the outcome any better than 
simply using the mean of the actual values. The CNN-
LSTM model achieves an R2 score of 0.88 for the ascending 
track, which is relatively high, suggesting that the model 
accounts for a significant proportion of the variance in the 
cumulative deformation. For the descending track, the R2 
score is 0.79, which is still substantial but indicates a 
slightly lesser ability of the model to explain the variance 
in the data compared to the ascending track. 
Table 1 Evaluation metrics for the proposed algorithms. 

Model RMSE R2 Score 
CNN-LSTM in Ascending Track 0.26 0.88 

CNN-LSTM in Descending Track 0.32 0.79 
 

The model demonstrates commendable precision in 
estimating cumulative deformation, with a notably lower 
RMSE for the ascending track data. This suggests that the 
model is slightly more effective in capturing the intricate 
spatial-temporal dynamics when analyzing data from 
ascending tracks, potentially due to variations in the 
satellite's observational geometry or differences in the 
environmental characteristics captured in each track type.  
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Conclusion 

In conclusion, the comprehensive evaluation of the 
CNN-LSTM model through quantitative metrics and the 
Bland-Altman plot analysis has substantiated its ability to 
accurately predict cumulative deformation from SAR data 
across ascending and descending tracks. The model 
exhibited notable precision in its predictions, as evidenced 
by the low RMSE values and high R2 scores, particularly for 
the ascending track data. This level of accuracy is crucial 
for developing reliable early warning systems for 
landslides, which can significantly mitigate the risk to 
infrastructure and communities in vulnerable areas. The 
Bland-Altman plot further affirmed the model's 
consistency in prediction accuracy, highlighting its 
potential applicability in real-world scenarios where 
precise and reliable predictions are paramount. 

Moving forward, it is imperative to address the slight 
disparity in model performance between ascending and 
descending tracks, potentially by integrating additional 
data sources or refining the model architecture better to 
capture the unique characteristics of each track type. 
Future research could also explore the integration of more 
diverse environmental variables and apply advanced 
Artificial Intelligence algorithms to enhance the model's 
predictive power. Ultimately, the goal is to refine and 
adapt the model to serve as a cornerstone in proactively 
managing landslide risks, contributing to the safety and 
resilience of affected communities worldwide. 
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